AFRL-IF-RS-TR-2000-140
Final Technical Report
September 2000

SECURE BORDER GATEWAY PROTOCOL AND
THE EXTERNAL ROUTING INTRUSION
DETECTION SYSTEM

BBN Technologies

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. G403

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

DTIC QUALITY TIFPTOTED 1 2 0 0 1 0 2 2 0 0 4 5

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical

Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-140 has been reviewed and is approved for publication.

TREN

APPROVED: Ka¥=)). Kl
ROBERT L. KAMINSKI
Project Engineer

- W
FOR THE DIRECTOR: K

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGA, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

SECURE BORDER GATEWAY PROTOCOL AND THE EXTERNAL
ROUTING INTRUSION DETECITON SYSTEM

Stephen T. Kent
Luis A. Sanchez

Contractor: BBN Technologies

Contract Number: F30602-92-C-0242
Effective Date of Contract: 30 June 1998
Contract Expiration Date: 30 December 1999
Program Code Number: G403

Short Title of Work: Security Enhancement and Intrusion
Detection for the Border Gateway
Protocol

Period of Work Covered: Jun 98 — Dec 99

Principal Investigator: Stephen T. Kent

Phone: . (617) 873-3988
AFRL Project Engineer: Robert Kaminski
Phone: (315)330-1865

Approved for public release; distribution unlimited
This research was supported by the Defense Advanced Research

Projects Agency of the Department of Defense and was monitored
by Stephen A. Scott, AFRL/IFGA, 525 Brooks Road, Rome, NY.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

Pubiic reporting burden for this coliection of information s esumated to average 1 hour per response, including the time for vevvewing'nnstruc(ions,_seurching existing data sources,
gathering and maintaining the data needed, and completing snd reviewing the coilection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions tor reducing this burden, to Washington Headguarters Sarvices. Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

T AGENCY USE ONLY /Leave blank/ | 2. REPORT DATE 3REPORT TYPE AND DATES COVERED
September 2000 FINAL (JUN 98 - DEC 99)
~Z. TITLE AND SUBTITLE S. FUNDING NUMBERS
SECURE BORDER GATEWAY PROTOCOL AND THE EXTERNAL ROUTING |[C - F30602-98-C-0242
INTRUSION DETECTION SYSTEM PE - 62301E
PR - G403
6. AUTHOR(S) TA - 00
Stcphen T. Kent WU - 01
Luis A. Sanchez
= PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES) & PERFORMING ORGANIZATION |
BBN Technologies REPORT NUMBER
10 Moulton Street
Cambridge, MA 02138 N/A
me 70. SPONSORING/MONITORING
Defense Advanced Research Projects Agency Air Force Research Laboratory/IFG AGENCY REPORT NUMBER
3701 North Fairfax Drive 525 Brooks Road
Arlington, VA 22203-1714 Rome, NY 13441-4505 AFRL-IF-RS-TR-2000-140

71. SUPPLEMENTARY NOTES

AFRL Project Engineer: Robert L. Kaminski/IFGA/(315) 330-1365

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. ABSTRACT (Maximum 200 words)

The Border Gateway Protocol (BGP), which is used to distribute routing information between autonomous systems (ASes), is
a critical component of the Internet's routing infrastructure. It is highly vulnerable to a variety of malicious attacks due to the
lack of a secure means of verifying the authenticity and legitimacy of BGP control traffic. The Secure BGP projects designed
a secure, scalable, deployable architecture (S-BGP) for an authorization and authentication system that addresses most of the
security problems associated with BGP. This contract final report includes the following documents concerning S-BGP:
"Lessons Learned from the Secure BGP Proof-of-Concept Implementation. "

"Secure Border Gateway Protocol (S-BGP)", by Stephen Kent, Charles Lynn, and Karen Seo.

"Design and Analysis of the Secure Border Gateway Protocol (S-BGP)", by Stephen Kent, Charles Lynn, and Karen Seo.

The last two items discuss the vulnerabilities and security requirements associated with BGP, describe the S-BGP
countermeasures, and explain how they address these vulnerabilities and requirements. In addition, the papers provide a
comparison of this architecture with other approaches that have been proposed, analysis the performance implications of the
proposed countermeasures, and address operational issues.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Internet Routing, Border Gateway Protocol, Security, Public-Key Cryptography, Digital 100
Signatures 16. PRICE CODE
77. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION { 18. SECURITY CLASSIFICATION {20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298§Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Pertorm Pro, WHS/DIOR, Oct 94

Table of Contents

Introduction

Lessons Learned from the Secure BGP Proof-of-Concept Implementation
Design and Analysis of the Secure Border Gateway Protocol (S-BGP)
ERIDS: An External Routing Intrusion Detection System for the Internet
ERIDS Design Document

BGP Monitoring Tool Design Document

BCAD Design and Use Document

21

31

70

INTRODUCTION
1 Secure Border Gateway Protocol

This document contains the final report for Secure Border Gateway Protocol and the External Routing
Intrusion Detection System.

The Border Gateway Protocol (BGP), which is used to distribute routing information between au-
tonomous sytems (ASes), is a critical component of the Internet’s routing infrastructure. It is highly
vulnerable to a variety of malicious attacks, due to the lack of a secure means of verifying the authen-
ticity and legitimacy of BGP control traffic. The Secure BGP project designed a secure, scalable, deployable
architecture (S-BGP) for an authorization and authentication system that addresses most of the security
problems associated with BGP

This contract final report includes the following documents concerning S-BGP:

e “Lessons Learned from the Secure BGP Proof-of-Concept Implementation.”
o “Secure Border Gateway Protocol (S-BGP),” by Stephen Kent, Charles Lynn, and Karen Seo.

e “Design and Analysis of the Secure Border Gateway Protocol (S-BGP),” by Stephen Kent, Charles
Lynn, and Karen Seo.

The last two items discuss the vulnerabilities and security requirements associated with BGP, describe the
S-BGP countermeasures, and explain how they address these vulnerabilities and requirements. In addition,
the papers provide a comparison of this architecture with other approaches that have been proposed, analyze
the performance implications of the proposed countermeasures and address operational issues.

9 External Routing Intrusion Detection System (ERIDS)

The External Routing Intrusion Detection System (ERIDS) was developed to fill a perceived lack of tools
for the analysis of routing inconsistencies in the public Internet.

ERIDS captures Border Gateway Protocol (BGP) messages, analyzes them against authoritiative and
observational data, and alerts network operators to inconsistencies which may reflect routing problems.

The data used in ERIDS comes from multiple sources, incorporated into two internal databases. ERIDS
makes use of the Internet Routing Registries (IRRs) to form a core of authoritiative data, along with other
sources such as the Internet Assigned Numbers Authority. It then supplements this data by recording
observed behavior while it runs, building up information to fill in gaps in the authoritative data available.
By doing so, ERIDS makes best use of the available information.

ERIDS consists of two software tools: the BGP Capture and Analysis Daemon (BCAD) and the BGP
Monitoring Tool (BGP). The BCAD acts either a capture tool (server), an analysis tool {client) or both,
depending on its configuration. The BGP monitoring tool subscribes to one or more BCADs’ event streams
and filters and displays them for later use.

The ERIDS architecture consists of BMTs subscribing to event streams from BCAD clients, each of which
can subscribe to BGP message streams from BCAD servers, and listen to local BGP traffic. These servers
can be emplaced at exchange points, usually on a high speed LAN or a switch port configured to provide
the relevant BGP traffic.

To capture BGP traffic, the BCAD uses the libpcap library to listen to all network traffic and filter out
all but BGP messages. It then discards unnecessary BGP messages, extracts the relevant fields from the
BGP Update messages, compresses them and forwards them to any BCAD clients currently connected over
a secure session.

The BCAD performs its analysis based on comparing the Network Level Reachability Information (NLRI),
Autonomous System Path (AS Path) and Next Hop fields in the BGP Update messages against its internal
databases. For each network announced in the NLRI field, the BCAD compares the source autonomous
system against its databases to see if that AS is authorized to announce a route for that network, the
BCAD compares each hop along the path to see if the AS’s routers are configured to share routes, and the

BCAD compares the Next Hop value against known routers at the border of the final AS along the path.
Each of those comparisons yields a score: if a result is found in the authoritative data, the score is either 0%
or 100%; if there is no authoritative entry but there is observed data, a score in between 0% and 100% is
calculated. The scores are summed. and if the summation is below a threshold value an event message is

generated.

The event messages are sent over a secure session to subscribing BMTs. Each BMT can log events,
present them with a graphical user interface using several filtering and sorting criteria, and perform scripted
actions when events arrive.

This contract final report includes the following documents concerning ERIDS:

¢ “ERIDS: An External Routing Intrusion Detection System for the Internet.” by Luis Sanchez. This
paper introduces ERIDS and déscribes the architecture of the system.

¢ “ERIDS Design Document.” This paper contains the design details of ERIDS.
¢ “BGP Monitoring Tool Design Document.” This paper describes the BGP Monitoring Tool.

» “BCAD Design and Use Document.” Describes the implementation details of the BGP Capture and
Analysis Daemon or BCAD.

BBN Technologies released both BMT and BCAD source C code on August 1999.

Lessons Learned from the Secure BGP Proof-of-Concept Implementation

1. At least some Cisco routers truncate unknown path attributes to 256 bytes.

!\)

S-BGP should have a per-peer option to remove the Attestation path attribute when sending an
UPDATE.

3. The code to verify that each prefix being advertised is covered by each RA along the path can require
O(N**2) work per RA. The S-BGP code should sort the prefixes in the NLRI when generating an RA
(which, recursively, translates to the first S-BGP speaker, and aggregation points) so that the work
expended by the multitude of receivers is linear.

4. As mentioned above for prefixes, it may be useful to sort AS SETs. But this needs to be explored
further as simple appending may be a better solution. (Appending raises the issue of what to do when
an AS appears in more than one of the routes being aggregated.)

5. Some operating systems cannot dynamically grow the execution stack. Algorithms that use recursion
over the RAs in a path may cause problems; looping (or tail recursion) would be a better technique.
Recursion over a certification hierarchy might also be a problem.

6. The large number of public keys (10s of thousands) can be a problem for some digital signature
hardware. The actual performance can be significantly less than that quoted by the vendor -- slow
enough that software verification might be a better solution.

7. Some digital signature hardware cannot achieve the advertised transaction rates unless their work
queue is kept full. The flow of control to keep a work queue full may require significant changes from
the flow used by BGP. Keeping the work queue full might require many messages to be processed in
parallel, increasing the amount of memory needed to hold the in-progress messages. A typical time-
space tradeoff.

8. The information to be signed is often fragmented. Either the information needs to be marshalled
together from several places, €.8., for some hardware hash implementations, or the hash function needs
to be capable of accepting the information in chunks. For example., a software hash might be more
efficient than one implemented in hardware. There can be a lot of pointer manipulation; using pointers
might not always be the most efficient implementation technique.

Design and Analysis of the Secure Border Gateway Protocol (S-BGP)

Stephen Kent , Charles Lynn, Karen Seo
BBN Technologies

Abstract

The Border Gateway Protocol (BGP), which is used to
distribute routing information between autonomous
svstems (ASes), is a critical component of the Internet’s
routing infrastructure. It is highly vulnerable to a variety
of malicious attacks, due to the lack of a secure means of
verifying the authenticity and legitimacy of BGP control
traffic. This document describes a secure, scalable,
deployable architecture, S-BGP, for a system that
addresses most of the security problems associated with
BGP. The paper discusses the vulnerabilities and securiry
requirements associated with BGP, describes the S-BGP
countermeasures, and explains how they address these
vulnerabilities and requirements. The paper also provides
a comparison of this architecture with other approaches
that have been proposed, analyzes the performance
implications of the proposed countermeasures, and
reports on prototype implementation experience.

1 Problem Description

Internet routing is based on a distributed system
composed of many routers, grouped into management
domains called Autonomous Systems (ASes). Routing
information is exchanged between ASes in Border
Gateway Protocol (BGP) [1] UPDATE messages. BGP
has proven to be highly vulnerable to a variety of attacks
{2], due to the lack of a scalable means of verifying the
authenticity and legitimacy of BGP control traffic. In
April 1997, we began work on the security architecture
described in this paper. In this section we describe the
problem—how the protocol works, the nature of observed
BGP traffic in the Internet, the correct operation of BGP,
the threat model and BGP vulnerabilities, and the goals,
constraints and assumptions that apply to the proposed
countermeasures.

1.1 Overview of BGP

The BGP-4 protocol, both message syntax and the
route propagation algorithm, is described in [1]. Routers
implementing BGP, BGP *“speakers,” exchange routing
information via UPDATE messages. An UPDATE
message consists of three parts: a list of address prefixes
for destinations that are no longer reachable via the
previously specified route; a list of prefixes that are
reachable; and the characteristics of the cumulative path
and current inter-AS hop, contained in path attributes, that
can be used to reach the address prefixes. (A prefix
specifies an IP address block, and consists of a count of
the initial significant bits in an [P address and the value of
those bits.) The attribute used to specify the inter-AS path,
the AS_PATH attribute, specifies a sequence of
Autonomous Systems (ASes) along the path, each
identified by its AS number. When propagating an
UPDATE to a neighboring AS, the BGP speaker prepends
its AS number to the sequence, and updates certain other
path attributes. Since an UPDATE can specify only one
path, only prefixes that share that path may be aggregated
into the UPDATE.

The backbone routers of the major internet service
providers (ISPs) have a route to every reachable IP
address. Analysis of BGP UPDATEs recorded during
January 1999, showed routing databases that contained
about 61,000 IPv4 address prefixes. Each (non-leaf) BGP
speaker maintains a full routing table, and sends its best
route for each prefix to each neighbor speaker. When a
BGP speaker reboots, it receives complete routing tables
{via UPDATEs) from each of its neighbors. The worst
case arises at Network Access Points (NAPs), where ISPs
are connected together via a high speed (100Mb/s) LAN.
A BGP speaker at a NAP might have about 30 peers.

On a daily basis, a BGP speaker at a NAP receives
about 1425 UPDATEs from each peer, an average
UPDATE rate of about ! per minute per peer. This rate is
affected somewhat by Internet growth, but is mostly a
function of UPDATEs sent due to link, component, or

congestive failures and recoveries. Analysis shows that
about 50% of all UPDATEs are sent as a result of route
“flaps,” i.e., transient communication failures that, when
remedied, result in a return to the original route. This sort
of routing behavior has long been characteristic of the
Internet [3] and the proposed security mechanisms take
advantage of this behavior to achieve acceptable
performance, as discussed in Section 6. (David Mills, an
architect of the NSFNET, confirmed that route flapping
has been common in the Internet since the mid-80's.)

1.2 Correct operation of BGP

Security for BGP is defined by the correct operation
of BGP speakers. This definition is based on the
observation that any successful attack against BGP should
result in other than correct operation, presumably yielding
degraded operation. Correct operation of BGP depends
upon the integrity, authenticity, and timeliness of the
routing information it distributes as well as each BGP
speaker’s processing, storing, and distribution of this
information in accordance with both the BGP
specification and with the (local) routing policies of the
BGP speaker’s AS. The following statements characterize
the primary correct operation features of BGP.

e Each UPDATE received by a BGP speaker from a
peer was sent by the indicated peer, was not modified
en route from the peer, and contains routing
information no less recent than the routing
information previously received for the indicated
prefixes from that peer.

e The UPDATE was intended for receipt by the peer
that received it.

e The peer that sent the UPDATE was authorized to act
on behalf of its AS to advertise the routing
information contained within the UPDATE to BGP
peers in the recipient AS.

e The owner of an address space corresponding to 2
reachable prefix advertised in an UPDATE was
authorized by its parent organization to own that
address space.

e The first AS in the route was authorized, by the
owners of the address space corresponding to the set
of reachable prefixes, to advertise those prefixes.

e If the UPDATE indicates a withdrawn route, then the
peer withdrawing the route was a legitimate
advertiser for that route, prior to its withdrawal.

e The peer that sent the UPDATE correctly applied the
BGP rules and its AS’s routing policies in modifying,
storing, and distributing the UPDATE, in selecting

the route, and in deriving forwarding information
from it.

e The BGP speaker that received the UPDATE
correctly applied the BGP rules and its AS’s routing
policies in determining whether to accept the
UPDATE.

The countermeasures developed for S-BGP meet the
first six of these criteria, even in the face of subversion of
BGP speakers (Byzantine failures). Section 4 provides 2
detailed analysis of how each countermeasure contributes
to correct operation. However, because the local policy
features of BGP allow a speaker considerable latitude in
determining how to process an UPDATE, these
countermeasures cannot meet the last two criteria, i.e.,
such attacks could be attributed to local policies not
visible outside an AS. To address such attacks, the
semantics of BGP itself would have to change. Moreover,
because UPDATEs do not carry sequence numbers, a
BGP speaker can generate an UPDATE based on old
information, e.g., withdrawing or reasserting a route based
on outdated information. Thus the temporal accuracy of
UPDATESs, in the face of Byzantine failures, is enforced
only very coarsely by these countermeasures. (Section 5
provides more details on residual vulnerabilities.)

13 Threat model and BGP vulnerabilities

BGP has a number of vulnerabilities that can be
exploited to cause problems such as misdelivery or non-
delivery of user traffic, misuse of network resources,
network congestion and packet delays, and violation of
local routing policies.

Communication between BGP peers is subject to
active and passive wiretapping. BGP uses TCP/IP for
transport and this protocol, and its payload, can be
attacked. A speaker’s BGP-related software, configuration
information, or routing databases may be modified or
replaced illicitly via unauthorized access to a router, or to
a server from which router software is downloaded, or via
a spoofed distribution channel. Most of these attacks
transform routers into hostile "insiders." Effective security
measures must address such Byzantine attacks.

Exploitation of these vuinerabilities allows a variety
of attacks. For example, fictitious BGP messages might be
injected into a link (spoofing). Authentic BGP messages
might be captured and either modified and re-injected into
the link, combined incorrectly, or suppressed altogether. A
compromised BGP speaker could generate UPDATE:s for
routes that do not, legitimately, pass through that speaker.
All of these attacks are countered by the mechanisms
described in Section 3.

UPDATE messages could be generated too frequently
by a compromised BGP speaker, or the selection of routes
and distribution of UPDATEs could violate the local
routing policies. These failures are not addressed by the
proposed countermeasures.

Better physical and procedural security for network
management facilities, BGP speakers, and communication
links; link-level encryption of inter-router (BGP speaker)
traffic; and end-to-end encryption of management
information would reduce some of these vulnerabilities.
However, some aspects of such security approaches are
economically unattractive or infeasible. Moreover,
accidental (vs. malicious) misconfiguration would not be
prevented by such measures and such misconfiguration
has proven to be a source of several significant Internet
outages in the past. Any security approach that leaves
BGP vulnerable to such benign “attacks” violates the
“principle of least privilege” and leaves the Internet
routing system vulnerable at its weakest link. In contrast,
the security approach described here satisfies this
principle, so that any attack on any component of the
routing system is limited in its impact on the Internet as a
whole.

1.4 Goals, constraints, and assumptions

In order to create countermeasures that are both
effective and practical, the S-BGP architecture is based on
the following goals, constraints, and assumptions.

The S-BGP architecture must handle the projected
growth and usage of the Internet in terms of performance
(storage, processing, network bandwidth). It should be
dynamic (responding automatically to topology changes,
including the addition of new networks, routers and ASes)
and scalable (able to handle the growth of the Internet in
terms of addresses, routes, BGP control traffic, etc.).

The countermeasures must be consistent with the
BGP protocol standards and with the likely evolution of
these standards. This includes packet size limits, e.g.,
4096 byte maximum for UPDATEs, and BGP features,
e.g., path aggregation, communities, and multi-protocol
support, e.g., multi-protocol label switching (MPLS). For
example, to avoid modifying BGP packet formats, we
have chosen to employ the BGP optional, transitive path
attribute as a mechanism for distributing countermeasures
information. Non S-BGP routers should pass this attribute
type transparently, without understanding it.

The S-BGP architecture must be deployable. A
primary goal of this work is to not only find
countermeasures for BGP vulnerabilities but to cause
them to be adopted by ISPs and router vendors. To

accomplish this, the countermeasures must use available
technology that can be incrementally deployed and they
should leverage off of the existing infrastructure, e.g., the
Internet Corporation for Assigned Names and Numbers
(ICANN), and routing registries. In addition, they must
avoid dependency loops; the architecture cannot depend
on correct operation of inter-AS routing during
initialization, e.g., it cannot rely on non-local databases.

2 Prior work

The earliest significant work published on the topic of
routing protocol security is Perlman’s doctoral dissertation
{21]. The S-BGP design shares several features of that
work, e.g., we address Byzantine failures and make
extensive use of digital signatures. However we differ in
many other respects, e.g., our design applies to a standard
exterior (vs. interior) routing protocol, and we pay
considerable attention to infrastructure and performance
implications.

At the time that we began this work, previously
published work on improving the security of BGP, and
more generally distance-vector protocols, included
proposals for adding sequence numbers to BGP messages
[4,5.6], authentication of BGP messages [1,5,6], neighbor-
to-neighbor encryption of BGP messages {4], and adding
information to UPDATE messages to protect against
tampering as the UPDATE propagates around the Internet
(4.5,7].

None of this work proposed a comprehensive solution
to the BGP security problems described above: each
focused on one or more aspects of the problem without
considering the full range of issues that are critical to a
viable solution. For example, none addressed issues
associated with the generation and distribution of public
key certificates and certificate revocation lists (CRLs)
needed to support validation of signed UPDATEs. Some
proposals made changes to BGP that are inconsistent with
the protocol standards, a reasonable approach only if one
were presented with a “clean slate.” None of the prior
work examined the statistics of BGP operating in the
Internet; this sometimes led authors to focus on
performance concerns that are not the major impediment
to deploying viable solutions. Some of the work
developed solutions for distance vector protocols, but
erroneously claimed applicability to BGP, which is
described as a path vector protocol.

In contrast, the BGP security architecture reported in
this paper is comprehensive, including a design for the
infrastructure needed to establish and maintain the system.
The optional transitive path attribute it employs is

consistent with BGP standards and can be safely carried
through routers not implementing S-BGP. This
architecture incorporates the notion of an address
antestation, which establishes that a “first hop” BGP
speaker is authorized to advertise a route to a destination.
No prior work includes an equivalent notion. Finally, the
performance of the design presented here has been
modeled based on actual BGP statistics, and has been
tested via a live BGP feed from an ISP. No other work has
been so rigorously analyzed from a performance

perspective.

In [7], the scheme proposed is similar to our route
attestations (RAs) in that before distributing an UPDATE
to an external neighbor, the BGP speaker signs the route.
Our approach differs from the scheme proposed in {7] in
that we sign a routing data structure that specifies the next
hop AS, explicitly indicating that this AS is authorized to
advertise the route in question to the identified neighbor.
Hence, our approach avoids a vulnerability not addressed
in [7], i.e., provides protection against “cut and paste
attacks” in which a BGP speaker inserts itself into a route
(using a valid UPDATE containing a route which the
speaker was not authorized to use).

The approach proposed in [4,5] was developed in
response to the perceived communication and
computation overhead of schemes such as [7]. In the case
of [7] (and our route attestations), each of the signatures
must be carried in each UPDATE and verified by each
recipient to validate each received UPDATE. The
approach proposed in (4,5] includes only a single
signature for a route in an UPDATE; this signature covers
only the destination and penultimate ASes listed in the
path and is generated by a BGP speaker in the destination
AS. While the overhead of [4,5] is less than that of [7] or
our route attestations, it fails to provide the protection
afforded by the iterated signature schemes in an
environment with more sophisticated routing policies
(e.g.. policies other than shortest path), such as those
typically supported by BGP. Moreover, our analysis
shows that generation, validation, and transmission of
digital signatures does not impose an unacceptable
computational or communication burden (see Section 6).

3 Proposed countermeasures

The approach adopted to securing BGP route
distribution involves two Public Key Infrastructures
(PKJs), a new path attribute containing “attestations”, and
the use of IPsec. These components are used by a BGP
speaker to validate the authenticity and data integrity of
BGP UPDATEs that it receives and to verify the identity
and authorization of the senders. This section discusses in

more detail the PKIs and certificates, the attestations, the
use of [Psec, and the distribution of this countermeasure
information.

3.1 PKlIs and certificates

S-BGP uses two PKIs, based on X.509 (version 3)
certificates, to enable BGP speakers to validate the
identities and authorization of BGP speakers and of
owners of ASes and of portions of the [P address space.
These PKIs parallel the existing IP address and AS
number assignment delegation system and take advantage
of this extant infrastructure. Because these PKIs mirror
existing infrastructure, their creation avoids many of the
“wrust” issues that often complicate the creation of a PKI.
The two PKIs involve four types of certificates, as
illustrated below. In the diagrams:

e The higher node is the issuer for the certificates
defined in the tier below it.

e The name of the current tree node (organization, AS,
router, etc.) is the subject of the certificate.

e Any additional fields shown in the node, e.g., address
block(s), are in an extension in the certificate.

e Other X.509 certificate fields are assumed, but not
shown.

Note that the organizations that assign addresses
(Registries, ISPs, DSPs, etc.) and the organizations that
obtain autonomous system numbers from a Registry may
be different. An organization could receive its AS number
from a registry and its address block from an ISP. So the
Org3_4 shown in the first PKI hierarchy (Figure 1) could
correspond to the Org 1 shown in the second PKI
hierarchy (Figure 2).

3.1.1 A PKI for address allocation. This architecture
calls for a certificate to be issued to each organization that
is granted “ownership” of a portion of the IP address
space. This certificate is issued through the same chain of
entities that, in the existing environment, is responsible for
address allocation. The root of this chain is the ICANN,
followed by regional address space allocation authorities
(e.g., ARIN and RIPE), ISPs, DSPs, and end users. Note
that the proposed system does not require that address
assignments be certified all the way to the subscriber. If a
subscriber’s address is allocated from that of a DSP or an
ISP with which it is currently affiliated, then the
certification process need only be effected as far as the
ISP/DSP. The same applies to DSPs that receive their
address-space assignments from ISPs. Also note that a
subscriber (or a DSP) who does not participate in BGP
exchanges (e.g., is singly-homed) need not be issued a

certificate if the subscriber's address space is derived
from that of an encompassing ISP or DSP'. Finally, if an
organization owns multiple ranges of addresses, this
design calls for assigning a single certificate’ containing a
list of address blocks, so as to minimize the number of
certificates needed to validate an UPDATE.

' For historical reasons, the chain of issuance described above was
sometimes short circuited. A subscriber (or DSP) who has an address-
space assignment that has bypassed the normal allocation procedure,
who has changed DSPs/ISPs and retained the originally assigned
address must also be certified, even if not a BGP user.

* If an organization acquires additional address blocks. a new certificate
is issued to reflect the increased scope of ownership.

ICANN

/

Orgl_1, Addr block(s) Orgl_

\

Org2_1, Addr block(s) e e« Org

“X

[\

9

Subject
Orgl_x
Org2_x
Org3_x

Description

Extension Description

Addr blocks(s)

/

_7, Addr block(s)

/

W

. Addr block(s) s ee Orgl_N, Addr block(s)

Org2_8, Addr block(s)

a 1st tier organization (usually a registry)
a 2nd tier organization (usually an ISP or DSP)
a 3rd tier organization (usually a DSP or user organization)

one or more IP address blocks assigned to the organization

Figure 1: Address Allocation PKI Structure

This PKI reflects the assignment of address blocks to
organizations by binding address block(s) to a public key
belonging to the organization to which the addresses are
being assigned. Unlike a typical X.509 certificate, the
identity of the subject is not the primary focus of these
certificates; instead, these certificates are used to prove
ownership of a block of addresses’. Each certificate in
this PKI contains a (private) extension that specifies the
set of address blocks that have been allocated to the
organization. The subject alternate name in each
certificate is the DNS name of an organization: an ISP,
DSP, or a subscriber. The ICANN, as root, is represented
nominally by a self-signed certificate that contains an
extension expressing ownership of the entire address
space. In Figure 1:

(a) ICANN is the root and issues certificates to the first
tier of organizations (Orgl_x). Under current

’One could place the address block in an X.509 attribute certificate,
linked to an X.509 public key certificate, in a more elegant approach
1o representing this data. However, because the number of certificates
involved is so great, and because attribute certificates are oot yet
widely supported, we have chosen to add the address biock
information as a private, v3 extension t0 2 public key certificate.

practice, Orgl_x would be an Internet Registry,
although historically it could have been an ISP, an
organization, etc. ICANN signs the tier 1 certificates
using its private key.

(b) Orgl_x then assigns sub-blocks of its address space
to ISPs or DSPs. In the diagram, for example,
Orgl_l issues a certificate to each of Org2_1
through Org2_7 and Orgl_N issues a certificate to
Org2_8. Orgl_x signs the certificate using the
private key corresponding to the public key in the
certificate it received in (a).

(c) Org2_x then assigns sub-blocks of its address space
to customers, DSPs, etc. In the diagram, Org2_l
issues a certificate to each of Org3_l through
Org3_4. Org2_x signs the certificate using the
private key corresponding to the public key in the
certificate it received in (b).

(d) Andsoon....

Table 1 summarizes the Issuer/Subject relationships
for the certificates in this PKI.

Certificate Type Issuer Subject
Root ICANN ICANN
Registry ICANN Registry
ISP/DSP Registry (or ICANN or ISP) ISP/DSP
Subscriber ISP/DSP (or Registry or ICANN) Subscribe

T

Table 1: Address Allocation PK} Certificate Overview

3.1.2 A PKI for ASes and router IDs. Three types of

certificates will be used to support the authentication of

ASes and BGP speakers, and the relationship between

speakers and ASes. Here too the ICANN is the root and

the next tier consists of registries, but the third tier

consists of organizations that own ASes, followed by a

tier of AS numbers and routers. The result is a broader,

shallower certification tree. As before, this tree parallels
existing “trust relationships,” i.e., the ICANN assigns AS
numbers to registries, which in turn assign one or more

AS numbers to organizations (e.g., ISPs/DSPs) that run

BGP. Each of these organizations is authoritative for

identifying routers as representatives (BGP speakers) for

the AS(es) that the organization owns. In order to express
the ownership of an AS by an organization, each third
tier certificate carries an extension that enumerates the

ASes assigned to that organization. Validation of fourth

tier certificates requires matching asserted AS numbers

against these extensions. For each fourth tier AS
certificate (b, below) there are typically several router

(BGP speaker) certificates (c, below), each specifying

the same AS number. (Note that there could be more

than one certificate assigned to a BGP speaker if the
speaker acts as a proxy for another AS.) As shown in the

Figure 2, these 3 types of certificates bind together:

(a) AS numbers and an organization's public key—a
registry issues these to organizations and signs them
using its private key. The alternate name in the
certificate is the DNS name of the organization. An
extension contains the (list of ranges of) AS
number(s).

(b) an AS number and its public key—An organization
issues these and signs them using the private key
corresponding to the public key in the certificate
described in (a). The issuer alternate name in the
certificate is the DNS name of the organization. The
subject alternate name is the AS number,
represented as a DNS name.

(c) a router (DNS) name, a router id, an AS number,
and the router’s public key—An organization issues
these and signs them using the private key
corresponding to the public key in the certificate
described in (a). Both the router id (an IP address)
and the AS number are extensions in this certificate,
and the binding of three items is a critical aspect of
this certificate. The subject alternate name is the
DNS name of the router corresponding to the router
id.

3.1.3 Attestations. An attestation establishes that the
subject of the attestation (an AS) is authorized by the
issuer to advertise a path to the specified blocks of
address space. There are two classes of attestations,
address and route, although a single format is employed
to represent both. Route attestations are carried in a new
type of optional BGP path attribute as part of UPDATE
messages:

e Address attestations—here the issuer is the
organization that owns the address space and the
subject is an AS that may originate it, e.g., the
organization’s provider. The issuer signs an address
attestation using the private key that corresponds to
the public key in the certificate (see Figure 1)
assigning this address space to the issuer.

e Route attestations—here the subject is a transit AS.
A route attestation is signed by the S-BGP speaker
(or offline by the management of the AS). The
signer uses the private key that corresponds to the
public key in the certificate that binds the speaker to
the subject AS (see Figure 2).

If an organization has more than one AS, there are
separate attestations for each AS rather than just one
attestation containing multiple AS numbers. Each AS
will have its own set of BGP speakers and its own
authentication certificate(s) as well. This applies to both
the stub and transit AS cases. Figure 3 summarizes the
structure for UPDATES and route attestations.

ICANN

/

Reg |

Org 1,

SN

Reg 2

Reg N

/

list of AS#s

™~

Org M, list of AS#s

%—\

/

™~

e (AS-I, AS#I) .. (RU-1, AS#-I, Rtr-ID-I) .« (Rtr-L, AS#-], Rtr-ID-L)

Subject Description

Regn DNS name of registry n

Org m DNS name of ISP/DSP/organization m
AS-i DNS name of autonomous system 1
Rtr-j DNS name of router j

Extension Description

AS#-1 autonomous system number for AS-i
Rtr-ID-k router identifier (IP address) for router k

Figure 2: Autonomous System ldentification and BGP Speaker PKI

Certificate Type Issuer Subject Extensions
Root ICANN ICANN All AS #s
Registry ICANN Registry AS #s
AS Owner Registry (or ICANN) ISP/DSP or Subscriber AS #s
AS ISP/DSP or Subscriber AS number (in DNS format) AS #

BGP Speaker ISP/DSP or Subscriber BGP Speaker DNS name AS #. Router ID

Table 2: AS and BGP Speaker PKI Certificate Overview

1

BGP |Addr Biks of Rtes] BGP Path Dest Addr
UPDATE Message |y, der| Being Withdrawn| Attributes | Blks (NLRI)
Path Attribgte Attribute Route Attestations
for Attestations Header
R Attestati Attestation [ssuer Certificate |Algorithm ID| Signed
oute Altestation Header | ID & Signature Info
) . Validity) AS Path|Other Protected| NLRI
Signed Information .| pateg Subject Info |Path Attributes Info

Figure 3: UPDATE Format with Route Attestations

3.2 Route validation

Attestations and certificates are used by BGP
speakers to validate routes asserted in UPDATE
messages, i.e., to verify that the first AS in the route has
been authorized to advertise the address block(s) by the
address block owner(s), and that each subsequent AS has
been authorized to advertise the route for the address
block(s) by the preceding AS in the route. To validate a

route received from AS , AS | needs:
e 1 address attestation from each organization owning
an address block or blocks in the NLRI

e 1 address allocation certificate from each
organization owning an address block or blocks in
the NLRI

e 1 route attestation from every S-BGP speaker (or its
AS) along the path (AS_to AS,), where the route
attestation generated and signed by router, (or AS,)
specifies the NLRI and the AS_PATH from AS, _,
through AS,

o 1 certificate for each S-BGP speaker along the path

(AS .o ASl) to check the signatures on the route
attestations

12

and, of course, all the relevant CRLs must have been
verified.

This means that for each UPDATE, there must be
attestations confirming that all the ASes in the BGP
UPDATE are authorized to advertise routes to the
destination IP address block(s). This includes ASes that
are providing third party advertisements for ASes that are
not running BGP.

The attestations are not used for checking withdrawn
routes because the authorization of the BGP speaker to
advertise those routes was verified at the time they were
installed into the local routing information base (Loc-
RIB). Moreover, if the BGP speaker has lost the
authorization to advertise that route, then the route is by
definition no longer valid and should be withdrawn.

Use of IPsec on inter-router communication paths
prevents an active wiretapper from spoofing route
withdrawals, or replaying valid UPDATE:s at times when
a BGP speaker would not transmit them, e.g., after a
route has been withdrawn and prior to advertisement of
the same or a different route.

33 Distribution of countermeasure

information

This section discusses the mechanisms used to
distribute certificates, CRLs, and address and route
attestations to the relevant devices performing route
validation: S-BGP speakers, route servers, etc.

3.3.1 Distribution of certificates, CRLs and address
attestations. Each S-BGP speaker must have access to
the public keys required to validate UPDATESs. For non-
leaf S-BGP speakers, this amounts to a full set of
certificates encompassing all address space owners, AS
owners, and some number of S-BGP speakers (plus the
ICANN and registry certificates). An X.509 certificate
used in this environment is about 450 bytes long,
depending on naming conventions and extensions. In the
current (June 1999) Internet environment, there are
approximately 5,300 autonomous systems, 44,000
organizations that own address prefixes, and 7,500 BGP
speakers. The resulting certificate database comprises
about 32 Mbytes, and it can be expected to grow each
year as more address prefixes, autonomous systems, and
BGP speakers are added. The CRL database associated
with these certificates adds to this total, but since the
certificates are issued to organizations and devices, not
people, CRLs probably will not grow significantly.

At first glance it might seem appropriate to transmit
certificates as part of each UPDATE. This would ensure
that each receiving BGP speaker would receive all the
data needed to validate the route attestations in an
UPDATE, and it would be easy for each BGP speaker to
include its own certificate as part of the forwarding
process. However, this would be very wasteful of
bandwidth, as each BGP speaker would receive many
redundant copies of certificates’. More importantly, this
approach is infeasible, because BGP UPDATEs are
limited in length to 4096 bytes and thus are too small to
carry the necessary certificates for most UPDATEs’. The
introduction of a new type of BGP message for
transmission of certificates (and CRLs) could address the
packet size problem, but would still tend to be very
wasteful of bandwidth and would not be backward
compatible.

“The redundancy arises from several sources. A BGP speaker tends to
receive routes to the same destination, via each interface, with
considerable overlap of ASes in each route. Withdrawal and later re-
advertisement of the same routes via the same interfaces results in
additional redundancy

*Many UPDATEs contain routes for multiple address blocks and some
routes contain many AS numbers, and each requires its own
certificate.

13

Instead, this architecture uses out-of-band
distribution of certificates and CRLs to all S-BGP
speakers. This is an attractive approach to the distribution
problem for several reasons. This database 1s relatively
static and thus a good candidate for caching and
incremental update. Moreover, the certificates can be
validated (and processed against CRLs) and reduced to a
more compact format by ISPs/DSPs prior to distribution
to S-BGP speakers. (Only the public key, subject and
selected extensions need be retained.) This avoids the
need for each speaker to perform this processing
(entailing tens of thousands of signature validations), and
it saves both bandwidth and storage space. Although
memory is inexpensive, most currently deployed
commercial routers do not possess sufficient memory to
store all of these certificates so either additional memory
or auxiliary systems will be needed, even with
preprocessing.

To address the distribution problem we make use of
two tiers of repositories from which one can download
the entire certificate and CRL database. The top tier
consists of several replicated, easy to access storage sites,
e.g., the NAP route servers. The second tier of
repositories are operated by the ISPs/DSPs, to provide
local access for the S-BGP speakers within each AS.
(Per-AS repositories avoid the dependency loop that
would occur if one required inter-AS routing in order to
access this database.) Bulk transfer of the whole
certificate or CRL database, from the first to second tier
repositories, can be effected via FTP or TFTP; since
certificates and CRLs are signed and carry validity
interval information, there is no need for additional
integrity mechanisms in the transfer. The second tier
repositories also will query top tier repositories to get
new CRLs, based on the NEXT UPDATE field in each
CRL, and to get new certificates, based on certificate
expiration, e.g., using the Lightweight Directory Access
Protocol (LDAP). Retrieval of newly issued certificates
(in between downloads of the complete database) for
newly created ASes, organizations with new address
space ownership, etc., could be effected in the same
manner, from daily incremental update files.

This allows an ISP/DSP to operate in an anticipatory
fashion, retrieving certificates before it needs them. Each
second tier repository will validate all of the certificates
and CRLs it retrieves, and produce a more compact
(locally signed) database ready for consumption by the
S-BGP speakers within its administrative purview. If
deemed necessary, the top tier repositories also can push
CRLs issued prior to scheduled dates.

The same analysis applies to address space
attestations. Each address attestation requires about 100

bytes, and this amounts to approximately 4 Mbytes.
Carriage of these data items in UPDATEs would usually
be redundant and thus is more effectively handled via the
same, out-of-band distribution mechanism. Here too, this
distribution model allows pre-processing by ISP/DSP
NOCs, further eliminating significant signature
validation overhead (there would be roughly 44,000 such
attestations currently). This mode! also simplifies
revocation of address attestations, i.e., an address space
owner can issue a CRL-like, signed data structure and
include it in the database for downloading and pre-
processing by each ISP/DSP. The total space required for
the certificate and address attestation databases can be
reduced from about 36 Mbytes to about 11 Mbytes as a
result of preprocessing.

3.3.2 Distribution of route attestations. Route
attestations are distributed with BGP UPDATEs in a
newly defined, optional, transitive path attribute. This
approach requires BGP speakers to be upgraded to a
BGP release with these countermeasures. When an
S-BGP speaker opens a BGP session with a peer,
transmitting the advertisable portion of its routing
information database via UPDATEs, relevant route
attestations are sent with each UPDATE. These
attestations employ a compact encoding scheme, to help
ensure that they fit within the BGP packet size limits,
even when route or address aggregation is employed.
(We preserve S-BGP security guarantees in the face of
aggregation by explicitly including signed attribute data
that otherwise would be lost when aggregation occurs.)
The S-BGP speaker receiving an UPDATE caches the
associated attestations with the route in its routing
information database. (We have not yet determined if a
mechanism for revoking route attestations is required, or
if a modest attestation lifetime will suffice.) Each BGP
speaker generates route attestations based on receipt of
UPDATE:s from its neighbors, as described in Section
4.2, thus in-band distribution is appropriate. As noted
below, the bandwidth required to support in-band
distribution of route attestations is negligible (compared
to user traffic).

34 IPsec and router authentication

BGP is transported over TCP and thus is protected
against misordered, lost, or replayed packets, to the
extent that the TCP sequence number management
facility is secure. BGP-4 provides a means for carrying
authentication information in BGP messages, but there is
no prescribed key management scheme and there is no
facility for sequence numbering of BGP messages, hence
this facility is not employed here. Instead, we use the
Encapsulating Security Payload (ESP) protocol (with

14

NULL encryption), from the IP security protocol suite
(IPsec) (8,9,10,11,12] to provide authentication, data
integrity, and anti-replay on a point-to-point basis, i.e.,
between BGP speakers. (Although the Authentication
Header protocol from the IPsec suite could be used here,
it is less efficient and thus was not selected.) The Internet
Key Exchange (IKE) protocol is used for key
management services in support of ESP. The PKI
established for router and AS authentication provides the
necessary certificates (see Section 3.1.2).

3.5 Other issues

BGP Path Attributes are being standardized to
support Communities (to support policy) [13],
Confederations (used to transparently split a large AS
into several smaller ASes to reduce the n’ peering
requirements) {14], and to support additional protocols
(IPV6, MPLS, and multicast) [15]). The Route Attestation
mechanism is designed to provide protection for these
and other new path attributes, in the same manner in
which it protects the current path attributes.

4 How these countermeasures address
BGP vulnerabilities

This section describes how the proposed
countermeasures reduce the vulnerability of BGP to the
attacks described earlier and provide much of the
functionality necessary for ensuring the correct operation
of BGP.

4.1 Certificates

The certificates described above are used to enable
verification of:

e An AS’s authorization to “advertise” a block of
addresses—The certificates from 3.1.1 are used to
verify that an AS is authorized to “advertise™ a block
of addresses. Specifically, the signature on an
address attestation must be verifiable using the
public key in a certificate containing the address
block(s) that include the address block(s) in the
address attestation.

e Anorganization’s ownership of an AS number—The
certificates from 3.1.2.a are used to verify that an AS
has been assigned to the holder of a particular public
key, i.e., an ISP, DSP, or subscriber organization.
They are used to validate 3.1.2.b or 3.1.2.a
certificates through the AS number linkage.

e An AS’s identity—The certificates from 3.12.b(or
certificate data pre-processed by a NOC and
distributed to routers) are used to verify the signature
of an AS on a route attestation.

e A BGP speaker’s identity and its association with an
AS—The certificates from 3.1.2.c are used to verify
the signature of a speaker on a route attestation, and
in conjunction with 3.1.2.a to make sure that the
speaker is authorized to act on behalf of the AS.

e Identity and authorization of a BGP peer—The
certificates from 3.1.2.c are used by the BGP
speakers when establishing peering sessions, to
authenticate each other.

4.2 Address and route attestations
These two countermeasures support validation of the
address prefixes and path information in an UPDATE.

Address attestations protect BGP against
misbehaving BGP speakers that originate or distribute
erroneous UPDATEs and BGP speakers whose
advertisable destination ~ addresses ~ have been
misconfigured. Whenever an S-BGP speaker advertises
itself as the starting point of a route for some address
prefix, other S-BGP speakers will verify that the AS
represented by that speaker is the subject of an address
attestation signed by the owner of the address prefix.
Since only the organization that owns the prefix can sign
such an attestation, no S-BGP speaker can falsify such an
advertisement.

Each S-BGP UPDATE will include a set of route
attestations, one per AS listed in the UPDATE, each of
which is added to the UPDATE as it propagates among
ASes. A route attestation indicates that the signing BGP
speaker is authorized to advertise to the neighbor the
route constructed thus far, by the organization owning the
AS (in which the speaker resides). The route attestation
is digitally signed by the S-BGP speaker distributing the
UPDATE. It includes the identification of the S-BGP
speaker’s certificate issued by the owner of the AS, the
destination addresses in the route, the list of identifiers of
ASes in the route, the identifier of the AS to which the
UPDATE is directed, a maximum lifetime, and other
transitive data requiring protection. Each recipient of an
UPDATE verifies the route attestations contained within
it before deciding whether to accept and distribute the
UPDATE. Route attestations protect BGP against
misbehaving BGP speakers that distribute erroneous
UPDATEs, and against misconfigured local routing
policies.

15

43 IPsec

IPsec (specifically ESP and IKE) provides the
security services needed by the receiving BGP speaker to
verify message integrity, the identity of the sender, and
the fact that it (the receiver) is the intended recipient of
every message. Although the attestations in UPDATE
messages protect against a wide range of active wiretap
attacks, use of ESP provides protection for all BGP
traffic, prevents replay of messages across a link, and
protects TCP against various forms of attack, including
SYN flooding and spoofed RSTs (resets).

5 Residual vulnerabilities

The S-BGP system (address attestations, route
attestations, PKIs, and IPsec for all BGP messages)
addresses many of the vulnerabilities of BGP-4.
Nevertheless, there exist vulnerabilities that are not
eliminated by this system, including the following:

e Suppression of BGP messages by a misbehaving
BGP speaker is not addressed. Use of [Psec (and
TCP) will detect active wiretap attacks that result in
lost or reordered BGP packets. However, a
compromised BGP speaker can elect to not transmit
BGP messages, even when local policy would call
for such transmission, e.g., for route withdrawal.
This is undetectable by the proposed
countermeasures, although coordinated network
monitoring might be able to detect such
misbehavior. The substantial flexibility afforded by
local policies in BGP appears to preclude countering
this vulnerability if such policies are to remain
private to ASes (as allowed by the BGP specification
and as currently practiced).

e Passive wiretapping to discover network
connectivity information is not addressed. These
attacks could be countered by enabling the
confidentiality feature of ESP, if the risk exceeds the
cost to encrypt and decrypt UPDATE messages.

e A BGP speaker may reassert a route that was
withdrawn earlier, even if the route has not been re-
advertised. This vulnerability exists because BGP
UPDATE:S do not carry sequence numbers or
timestamps that could be used to determine the
currency of UPDATEs. However, route attestations
do expire, so there is a limit on how long an old
attestation can be used for such purposes. The
possibility also exists to add a CRL-like function for
route attestation revocation, a possibility that will be
explored later in our work.

e Verification that the BGP peers that exchanged the
UPDATE, correctly applied BGP rules, local
policies, etc., is not addressed. As above. BGP
affords speakers considerable latitude with regard to
local policy and ASes do not usually make public
their local routing policies, hence it appears difficult
to counter such problems. S-BGP restricts malicious
behavior to the set of actions for which the speaker
{or AS) is authorized, based on externally verifiable
constraints.

6 Performance and operational issues

In developing the S-BGP architecture, we have paid
close attention to the performance and operational impact
of the proposed countermeasures. Previous work in the
area of routing security has often focused almost
exclusively on the costs of generating and validating
digital signatures. While such costs are an important
factor, our analysis suggests that the bandwidth and
storage requirements associated with signatures,
certificates and CRLs are much bigger problems. The
following analysis is based on examination of actual
Internet routing data plus simulation of the effects of
S-BGP countermeasures.

6.1 Processing

The computation burden for signature generation
and validation appears to be tractable in this proposed
architecture. We have selected the Digital Signature
Algorithm (DSA) to minimize the size of the signatures,
specifically for route attestations. DSA yields only a 40-
byte signature, vs. the 128-byte signature typical for RSA
(using 1024-bit keys). DSA also allows for pre-
computation, which permits lower latency in signature
generation by S-BGP speakers. Other (S-BGP-specific)
techniques (described below) significantly reduce the
need for signature validation operations, so the
processing asymmetry exhibited by DSA is not a concern
here.

The rate at which new UPDATEs are created is not
so great that signature generation and validation of route
attestations is expected to pose a bottleneck. A BGP
speaker at a NAP, peering with about 30 other BGP
speakers, receives an average total of about .5 UPDATEs
per second. Each route contains an average of 3.6 ASes,
and there is one route attestation per AS, yielding a rate
of about 1.8 signature validations per second. In contrast,
each UPDATE generated by an S-BGP speaker requires
just onme signature (added by the speaker), thus the
signature generation rate is less than one third (1/3.6) of

16

this value. Peak load figures may be about a factor of ten
greater, yielding a peak load of about 18 signatures per
second. However, analysis of data from NAPs shows that
50% or more of all UPDATESs repeat routes already
known to a BGP speaker (e.g., due to link flapping).
Thus caching just one route for each address prefix
enables a speaker to avoid the need to validate signatures
on the vast majority of UPDATEs, reducing the peak
load to about 9 signatures per second, a tolerably low
computational burden’.

Upon initialization (reboot), 2 BGP speaker receives
complete routing table updates from each peer. This
means that an S-BGP speaker will receive a very large
number of route attestations requiring validation, i.e.,
about 220,000 per peer, in a short time interval. This sort
of initialization transient would be unacceptable, even
though reboots and installation of new speakers is
relatively infrequent’. To avoid this problem, we propose
the addition of non-volatile storage for validated route
attestations, to preserve the cache across reboots. When
installing a new BGP speaker in an AS, a NOC could
dump the cache from another speaker in the AS and
reload it into the new BGP speaker, to seed the cache in
the newly installed device.

6.2 Transmission bandwidth

The transmission of countermeasures data in
UPDATEs increases the size of these messages to
approximately 450 bytes (based on an average of 3.6
route attestations per path), for a typical UPDATE that
previously required only 63 bytes. This represents a
significant percentage increase in BGP overhead (over
700%), but the transmission of UPDATEs represents a
very. very small amount of data relative to subscriber
traffic. As noted above, even a speaker at a NAP sees an
average rate of less than one UPDATE per second, and
such speakers are connected via 100 Mb/s interfaces
today, with plans to transition to multi-Gb/s interfaces in
the future.

Downloading the certificate, CRL, and address
attestation databases contributes an insignificant
increment to this overhead. Full database transmission,
from a top tier to a second tier repository entails about a
36 Mbyte file wansfer for each ISP/DSP. Even if
performed on a daily basis, this traffic is swamped by
subscriber file transfers. Transfers from a second tier

* For example, SSLeay software can perform about 40 DSA (1024-bit
key) signatures per second on a 450MHz Pentium II processor.

" Because of the important service they provide, BGP speakers are
usually afforded UPS protection and new software is deployed only
after extensive testing, 1o minimize the likelihood of crashes.

repository to each BGP speaker in its AS are smaller,
about 11 Mbytes (due to certificate extraction). Here too,
even if performed daily, this would be but a drop in the
ocean of subscriber traffic, and use of incremental
transfers is a more likely scenario. So the impact on
utilization of Internet bandwidth due to transmission of
all of the countermeasures data is minimal. Also, the
speed of inter-router circuits continues to increase
substantially, further ~minimizing the impact of
transmission of additional control traffic.

6.3 Storage/memory

UPDATESs received from neighbors are held by a
BGP router in Routing Information Bases (RIBs) and
used to generate new UPDATE:s for transmission to other
BGP routers. The additional memory required for pre-
processed certificates and address attestations amounts to
about 11 Mbytes. The space required for route
attestations is about 26 Mbytes per peer, a modest
amount for a typical speaker with 2 or 3 peers, but a
significant amount of storage for speakers at NAPs,
where each speaker has about 30 peers. This amounts to
a large but feasible amount of additional RAM by current
standards, where a high end workstation can be
configured with hundreds of megabytes of RAM. The
routers that act as BGP speakers at NAPs are large, very
expensive devices. However the storage capacity of the
routers currently used by ISPs/DSPs would not permit
storage of S-BGP UPDATEs in their RIBs, if S-BGP
were deployed. Thus additional, non-volatile storage is
needed in BGP speakers to support these databases. It
may be feasible to significantly reduce the storage
required here, since the routes (and thus route
attestations) received from different peers tend to exhibit
significant overlap in their suffixes.

6.4 Deployment and transition issues

Deploying S-BGP raises a number of other issues:

Adoption of S-BGP by several groups— The ISPs,
DSPs, and subscriber organizations running BGP will
need to cooperate in the generation and distribution of
attestations. The first tier ISPs (those connected to the
NAPs) must implement the S-BGP security mechanisms
in order to offer significant benefit to the Internet
community. (Lower level ISPs, DSPs, and subscriber
organizations will need to implement the S-BGP security
mechanisms only if the expense can be justified.)
ICANN and registration authorities will need to expand
their operational procedures to support generation of
address space and AS number delegation certificates.

17

Finally, router vendors need to provide additional storage
in next generation products, or offer ancillary devices for
use with existing router products, and revise BGP
software to support S-BGP.

S-BGP interaction with other exterior and interior
routing protocols—External routes received from
external peers need to be redistributed within the AS in
order to maintain a consistent and stable view of the
exterior routes across the AS. Interior routing protocols
will not propagate S-BGP attestations, but if each border
S-BGP speaker maintains an iBGP (The acronym
"BGP" denotes intra-AS use of BGP, in contrast to the
common inter-AS use of BGP, sometimes referred to as
eBGP.) connection with all other transit and border
routers within the AS, this problem will be averted.

BGP-4 to S-BGP Transition—The route attestation
path attribute is optional for both external and internal
BGP exchanges. This allows extensive regression testing
before deploying S-BGP on production equipment.

7 Test scenario and results

To verify that the proposed countermeasures work as
expected, and to validate our performance projections,
we created a prototype implementation of S-BGP and
conducted some tests in the DARPA-sponsored CAIRN
testbed.

7.1 Testbed characteristics

The testbed routers were configured with FreeBSD
22.x as the OS and GateD as the BGP implementation.
The hardware platform consisted of Pentium Pro (200-
MHz 686-class CPU) with 64 to 256 Mbytes of memory.

Our S-BGP countermeasures were added to the
GateD BGP implementation. This software was
instrumented to collect performance statistics as
described below. We also developed a man-in-the-middle
(MITM) tool that was placed between a testbed BGP
speaker and a BGP peer in an ISP. This tool was used to
intercept BGP control traffic coming from the BGP peer
in the Internet, augment it with S-BGP countermeasure
data, and then pass it to the S-BGP peer in the CAIRN
testbed. In this fashion, we simulated the effect of having
deployed S-BGP in the Internet. This tool also can be
used to test the effectiveness and robustness of the
S-BGP countermeasures, e.g., by injecting bad routes,
making the link appear to go up and down, etc. Finally,
we developed a tool that accepts a recording of multiple
sessions of BGP traffic and replays it to simulate the
original order and arrival intervals for the BGP traffic.

This latter tool allowed us to conduct tests with
deterministic data, to facilitate comparison of results for
BGP-4 vs. S-BGP and for optimizations of S-BGP.

For these tests, we used a short duration (10-20
minute) BGP feed, and extrapolated the results to daily
operation scenarios. The feed represents a link over
which about 2.900 KEEPALIVEs (55 Kbytes) and 1,426
UPDATEs (89 Mbytes) would be transmitted on a daily
basis. There were about 58,000 entries in the certificate
database (32 Mbytes) and about 44,000 address
attestations (4 Mbytes) supporting validation of the route
attestations received in these UPDATEs.

7.2 Experiment results

We tested the performance impact of the S-BGP
countermeasures, vs. regular BGP, and examined the
effect of some optimizations. Where results are a
function of the number of peers seen by a BGP speaker,
we present them on a per peering session basis. This
allows one to estimate the overhead seen by a router with
N peers by simply multiplying by N. Also, this provides
a good approximation of how a multi-peer speaker
behaves, since verification need be performed only for
the “best” route. Under typical conditions, a BGP
speaker receives one copy of a given UPDATE from
every one of its external peers, plus one from every other
BGP router in the same AS. In the absence of “best route
only” validation, every one of the UPDATEs received
via eBGP must be validated, whereas those received via
iBGP are assumed to have been validated by the sender.

For example, at a NAP, a router might have
approximately 30 eBGP peers. So one would multiply
the storage and CPU numbers (which are sensitive to the
number of peers) for one peer by 30 plus the number of
BGP peers in the router’s own AS to obtain the total RA
storage and CPU needed. Additional bandwidth would be
on a per link basis, so the bandwidth numbers discussed
below would not have to be multiplied by the number of
peers. Since validation of a route is done only for the
route that is selected, the CPU costs approach those of
the single peer case. (The router may not receive the
"best” route first and hence may have to verify more than
one UPDATE, depending on the order of arrival of
different paths to the same destination, when the best one
arrives, how long one waits before deciding one has the
"best" route, etc.)

Bandwidth utilization is not an issue. The bandwidth
used to download certificate and Address Attestation
(AA) extracts, an operation that might be performed on a
daily basis between a NOC and each router in its AS, is

18

tiny compared to user traffic volumes. (The full
certificate and AA database used in our experiments
amounted to about 343 Mbytes, but was reduced to just
38 Mbytes as a result of the extraction pre-processing.)
Even the added overhead for transmission of RAs
amounted to only about 1.4Kbs between a pair of routers.
again a miniscule amount relative to subscriber traffic
and relative to the speed of a typical inter-router link.

Storage utilization was significant, and grew when
we employed caching. The certificate extracts occupied
about 32 Mbytes of storage, and AAs required about 10
Mybtes. Both figures are higher than the raw database
sizes, due to the addition of data structure overhead for
efficient access. This AA figure was much higher, due to
storage format conventions used in GateD and in S-BGP.
The AA storage figure could probably be reduced to less
than 5 Mbytes with further attention to data structure
design. The most significant overhead is associated with
RA storage. Each interface (ADJ-RIB) required almost
17 Mbytes of additional storage, which could become
significant for a router at a NAP with over 30 neighbors.
When a depth one cache was added (to reduce RA
validation and generation costs), the number grew to
about 26 Mbytes, a 50% increase. This percentage
increase is due to the fact that BGP already requires a
depth one cache for inbound UPDATE data, but not for
outbound data. Thus a deeper cache would result in
larger percentage increases, as both inbound and
outbound storage would grow.

The amount of CPU time devoted to RA validation
was 123 minutes per day, while generation time was only
16.2 minutes per day. This asymmetry, roughly a factor
of 8, arises because of several factors. All inbound
UPDATEs were validated in the unoptimtzed case and
that requires checking signatures on an average of about
3 RAs per UPDATE. Also, the DSA exhibits an
asymmetry of its own, in which signature validation is
slower than signature generation. Finally, not every
inbound UPDATE resulted in a corresponding outbound
UPDATE.

When caching was enabled, the number was largely
unchanged, decreasing by only about 2%! We estimate
that this is due to two factors. First, the BGP feed we
received was from an ISP, and was analogous to what a
DSP would receive. This means that most of the route
flaps that caching would detect (and use to avoid
redundant signature validation) were already filtered out
by the ISP. Second, the duration of each test was
relatively short, thus minimizing the opportunity for the
cache to be filled and then exploited. Thus this test did
not verify our thesis regarding the utility of caching. Still,
the amount of time devoted to cryptographic processing

was sufficiently small as to be tolerable, even using including malicious or benign errors by an ISP/DSP,
software. could compromise security.

e Hash Chain Signatures [20] — This work describes
two protocols, COSP and IOSP, based on hash chain
signatures, that offer very rapid signature generation
and validation in a routing protocol context. COSP is
not applicable because it requires signing messages
at fixed time intervals, whereas BGP generates

-UPDATES on demand, as result of topology
changes; IOSP is not applicable because its
efficiency depends on each router receiving
essentially all routing updates, which is not

8 Subsequent related work

Since we began this work, there have been several
other efforts towards securing BGP. These include an
assessment of BGP vulnerabiliies and several
approaches to addressing some of these vulnerabilities.
(S. Murphy’s "BGP Security Analysis” surveys this topic.
At the time this paper was prepared, the most recent
version was <draft-murphy-bgp-secr-03.txt>, June 1999.)

TCP/MDS5 [16]-This defines a TCP option for
carrying an MDS5 digest. This mechanism offers data
origin authentication and data integrity, on a point-
to-point basis. It protects the TCP connection used to
transport BGP traffic from spoofing attacks and
connection hijacking. Lack of an automated key
distribution protocol complicates management and
encourages overly long term use of symmetric keys.
Moreover, because it fails to protect against any
attacks that subvert routers or the management of
routers, its overall security efficacy is quite limited.

NLRI Origin Verification {17} — This mechanism
proposes adding an address prefix delegation tree to
Secure DNS [18]. For each prefix that has been
authorized for use, a new resource record specifies
the number of the AS that is authorized to originate
that prefix. This mechanism does not address route
authorization, nor does the proposal describe in
detail how this data would be distributed to BGP
speakers. It does represent an alternative format and
database option for the address attestations
developed in our architecture.

Routing Policy System Security [19] - This
approach places authorization information into a
small number of databases (Internet Routing
Registries) accessible by routers. The information is
placed into a database by the organization
responsible for the authorization, using some secure
access method, e.g., SSL. It proposes that BGP
speakers compare the routes that they receive to the
routes listed in the database, rejecting any routes not
found. No changes to BGP are required. This
approach does not appear to be very dynamic,
although details of how, and how often, the registries
are to be accessed are omitted. Use of such registries
would require ISPs/DSPs to publicize what is now
local policy information, which most have refused to
do. Moreover, the routes stored in the registries are
not signed, so attacks against these databases,

19

characteristic of the operation of BGP.

9 ‘ Future work

Deploying this technology into the Internet will
require the creation of the supporting PKIs, rooted at the
ICANN, and convincing ICANN, the Internet Registries,
the major ISPs, the owners of IP address blocks and the
router vendors of the benefits and supportability of these
security mechanisms. We hope to be able to pursue a
variety of technology transfer activities to facilitate
adoption of S-BGP. The prototype implementation and
experiments described above are a first step in this
direction.

10 Summary

BGP is a critical component of the Internet’s routing
infrastructure and highly vulnerable to a variety of
attacks. The S-BGP countermeasures use IPsec, Public
Key Infrastructure (PKI) technology, and a new BGP
path attribute (“attestations”) to ensure the authenticity
and integrity of BGP communication on a point-to-point
basis, and to validate BGP routing UPDATES on a source
to (multicast) destination basis. These enhancements will
allow Internet Service Providers (ISPs) and their
customers to verify that:

e reachability information they receive is from an
authentic and authorized BGP peering relationship
and has not been modified without authorization;

e the authorization of an organization to claim
ownership of a block of IP addresses (a
(sub)network) is substantiated by a chain of
authorizations rooted at the Internet Corporation for
Assigned Names and Numbers;

e anoriginating AS is authorized to advertise
reachability to a block of IP addresses by the
organization owning that address block;

o the ASes that processed the routing information en-
route from the originating AS are not, either through
mis-configuration, internal error, or compromise,
advertising reachability information that is
inconsistent with nominal topology;

o each AS, and its BGP speakers, that advertise a
given route are identifiable and authorized to
participate in global Internet routing, by a chain of
authorizations rooted at the ICANN.

The significance of this work extends to essentially all
Internet users, as almost all depend on the availability of
global Internet for access to a wide range of services. A
large and growing number of federal government
services, including most DoD activities, rely heavily on
the Internet for a wide range of (non-tactical)
communications, hence this work has significance for
national security.

11 Acknowledgements

Many individuals contributed to the design and
development of S-BGP. Initial funding was provided by
NSA, in April of 1997, yielding a first cut design.
DARPA provided later support, under Dr. Hilarie
Orman, enabling us to refine, implement and test the
design. S-BGP has benefited significantly from the
insight and efforts of Martha Steenstrup and Luis
Sanchez. As members of the architecture team, their
contributions were critical to the design of the attestation
and PKI schemes and the associated evaluations of other
approaches and performance and operational issues. The
authors would also like to thank Michelle Casagni, for
her work on the performance analysis and Joanne
Mikkelson, Dennis Rockwell, and Nicholas Shectman for
their efforts during the ongoing implementation and
experimentation phase.

12 References

(1] Y. Rekhter. T. Li, “A Border Gateway Protocol 4
(BGP-4),” RFC 1771, March 1995.

[2] BBN Report 8217, "An Architecture for BGP
Countermeasures,” November 1997.

(3] C. Villamizar, R. Chandra, R. Govindan., “BGP Route
Flap Damping,” RFC 2439, November 1998.

[4] Smith, B.R. and Garcia-Luna-Aceves, J.J., “Securing the
Border Gateway Routing Protocol,” Proceedings of Global
Internet ‘96, November 1996.

20

{5} Smith, B.R. Murphy. S.. and Garcia-Luna-Aceves, J.J.,
“Securing Distance-Vector Routing Protocols.” Symposium on
Network and Distributed System Security. February 1997.

(6] Kumar, B., “Integration of Security in Network Routing
Protocols,” ACM SIGSAC Review, vol.11, no.2, Spring 1993.

{7] Murphy, S., panel presentation (no text) on “Security
Architecture for the Internet Infrastructure,” Symposium on
Network and Distributed System Security. April 1995.

{8] S. Kent, R. Atkinson, “Security Architecture for the
Internet Protocol,” RFC 2401, November 1998.

[9] R. Glenn & S. Kent, "The NULL Encryption Algorithm
and its Use with {Psec,” RFC 2410, November 1998.

{10] S. Kent. R. Atkinson, “IP Encapsulating Security Payload
(ESP),” RFC 2406, November 1998.

(11] D. Maughan, M. Schertler, M. Schneider, J. Turner,
“Internet Security Association and Key Management Protocol
(ISAKMP),” RFC 2408, November 1998..

{12] D. Harkins, D. Carel, “The Internet Key Exchange
(IKE),” RFC 2406, November 1998.

(13] R. Chandra. P. Traina, T. Li. "BGP Communities
Attribute,” RFC 1997, August 1996.

[14] P. Traina, “Autonomous System Confederations for BGP,”
RFC 1965, June 1996.

[15] T. Bates. R. Chandra, D. Katz. Y. Rekhter, “Multiprotocol
Extensions for BGP-4,” RFC 2283, February 1998.

[16] A. Heffernan, “Protection of BGP Sessions via the TCP
MDS5 Signature Option,” RFC 2385, August 1998.

{17] T. Bates, R. Bush, T. Li. Y. Rekhter, “DNS-based NLRI
origin AS verification in BGP,” presentation at NANOG 12,
February 1998, http://www.nanog.org/mtg-9802.

[18] D. Eastlake, 3%, C. Kaufman, “Domain Name System
Security Extensions,” RFC 2065, January 1997.

[19] C. Alaettinoglu, T. Bates, E. Gerich, D. Karrenberg, D.
Meyer. M. Terpstra, C. Villamizar, “Routing Policy
Specification Language (RPSL),” RFC 2280, January 1998.

(20] K. Zhang, “Efficient Protocols for Signing Routing
Messages.” Network and Distributed System Security
Symposium, March 1998.

{211 R. Perlman, ““Network Layer Protocols With Byzantine
Robustness,” MIT/LCS/TR-429, October, 1988.

ERIDS: An External Routing Intrusion
Detection System for the Internet

Luis Sanchez
BBN Technologies
lsanchez@bbn.com

21

Contents

1

Introduction
1.1 Problem Statement

System Overview

21 COMCEPE .« o ¢ v v e e e e e e e e e

System Components

3.1 BGP Capture and Analysis Daemon (BCAD)
311 Probe . . . e e e e e e e e e e e e
3.1.2 Database e e e e e e e e
3.1.3 AnalysisEngine

3.2 BGP Monitoring Tool

Database Structure

4.1 Use of Internet Routing Registries as a Database for ERIDS

4.2 Detailed Analysis of IRR data
4.3 New Approach

Data Processing

System Performance
6.1 Detection Accuracy.
6.2 Volumeof Data

Security Considerations

22

Audience

The purpose of this document is to present the architecture of an external routing intrusion detection
system. This document assumes that reader has basic TCP/IP knowledge. The document further assumes
that the reader has basic understanding of Internet Routing principles, the Broder Gateway Protocol and
basic understanding of probability theory.

1 Introduction

1.1 Problem Statement

The Border Gateway Protocol 4 (BGP-4) is an external gateway protocol designed for distributing external
routing information among routers (BGP speakers) of distinct Autonomous Systems (AS) throughout an in-
ternetwork [Rekhter95]. The integrity of the external routing infrastructure and correct operation of routers
depend on the correctness of the Routing Information Base (RIB) from which the forwarding information
was derived and the correct operation of the router in deriving this forwarding information. Specifically, the
correct operation of BGP-4 depends upon the integrity, authenticity, and recentness of the routing informa-
tion it distributes as well as each BGP speaker’s processing, storing, and distribution of this information
in accordance with both the BGP specification and the routing policies of the BGP speaker’s autonomous
system.

BGP-4 is highly vulnerable to a variety of malicious attacks both in theory and in practice, due to the
lack of a scaleable means to verify the authenticity and legitimacy of BGP control traffic from which routers
generate and update their Routing Information Bases. For example, the communication links between
BGP neighbors are subject to active and passive wiretapping. Fictitious BGP messages could be injected
into a link (spoofing attack). Intercepted BGP messages could be replayed over the link at a later time
(replay attack). Regardless of the specifics of the attack, the acceptance of erroneous UPDATEs and/or
suppression of UPDATEs may cause selection of routes that are not consistent with the current state of
the internetwork. Compromise of management or configuration information could result in the generation of
UPDATES containing addresses of destinations outside of the autonomous system or in the selection of routes
and distribution of UPDATESs in violation of the local routing policies. Attacks resulting from erroneous
configuration of BGP speakers may produce the same problems as those resulting from erroneous UPDATEs
produced by active wiretapping or misbehaving BGP speakers.

BBN Technologies is currently developing a system of countermeasures to secure BGP-4 [BBN97]. The
system, S-BGP, relies on a Public-Key infrastructure that mimics the IP address space allocation (and
autonomous system number assignment) and a new BGP transitive path attribute containing signatures
to verify the validity of the routes that BGP speakers advertise. The system is backwards compatible
with existing BGP-4 implementations and does not impose hardware modifications on existing routing gear.
However, deployment of the proposed countermeasures is a non-trivial task. It requires deployment of
additional hardware and software by Internet Service Providers (ISP) in support of these countermeasures
and establishment and administration of a public key infrastructure by registration authorities and ISPs, all
on the scale of the worldwide Internet. Hence it may be several years before the deployment can be completed.
To mitigate this problem we decided to explore detection as a possible solution to these problems while a
set of countermeasures that can prevent the above mentioned attacks are widely deployed an accepted in
the Internet. ERIDS is such a solution.

In the remaining of this document we discuss ERIDS in detail starting with a system overview in Section 2.
ERIDS is a rule-based system that detect routing anomalies by comparing the contents routing UPDATES
against a database of Internet wide routing policies. In doing so, ERIDS uses a database structure that
resembles the BGP routing information base. We discussed this structure in Section 4. In Section 5 we
discuss the processing a BGP packet undergoes from when it is collected by an ERIDS probe, through the
intrusion detection analysis to the event management and message display. The volume of data transfer
from probes to the analysis nodes, the accuracy of detection, memory and CPU processing are among the

23

several performance issues we discussed in Section 6. We conclude with Section 7 where we discuss several
system level security issues.

2 System Overview

2.1 Concept

The ERIDS is an Intrusion Detection System specifically designed to detect routing anomalies. It is capable
of: 1) collecting BGP-4 messages; 2) analyzing the messages by decoding the data payload; 3) comparing
the messages against a routing information databased derived from the routing policy database(s); and, 4)
detecting specific intrusion events.

The system is capable of detecting exterior routing inconsistencies by comparing actual BGP-4 UPDATEs
with a routing policy database. This database contains both authoritative and non-authoritative routing
policies derived from the Internet Routing Registry and history data collected at the NAPs and other access
points.

The Internet Routing Registry is a set of databases distributed over the Internet which contain routing
information for each Autonomous System. Networks and providers worldwide enter data directly into these
registries in order to publish the set of routes originated by an Autonomous System and the routing policies
implemented by it. THe IRR data however is incomplete. Due the voluntary nature of the IRR effort, not
all organizations register their routes in the databases making these databases inconsistent and out of date.
We discussed this in detail in Section 4

The External Routing Intrusion Detection System has a set of monitoring probes that collects BGP-4
messages at both private and public peering points and transmits them to an intrusion detection engine
for decoding, analysis and response. The proposed system is capable of providing Network Operation Cen-
ters (NOCs) with information indicating incorrect operation of BGP-4 due to malicious attacks or mis-
configurations. The system is capable of transmitting alert messages to NOCs upon detection of any of the
following conditions:

¢ Unauthorized advertisement of routes
e Arrival of UPDATE messages from unidentified neighbors

e Unauthorized withdrawal of legitimate routes

All communication between the intrusion detection system and the NOC will be authenticated and
encrypted (if necessary) using emerging IPSec standards. The system will be capable of verifying routing
information received from both external and internal BGP peers against existing route objects in route
registries and local databases. This provides the system with the means to discern database mis-configuration
from malicious attacks. However, this scheme imposes further requirements on the security of the databases
storing such information.

3 System Components

ERIDS is an intrusion detection system for BGP. It is comprised of two modules:

e the BGP Capture and Analysis Daemon (BCAD) and,
o the BGP Monitoring Tool (BMT).

The BGP Capture and Analysis Daemon is the heart and brain of the system. It captures BGP traces
and analyzes the packets found in the traces to identify attacks or misconfiguration. It compares the packet

24

traces against a local database of know BGP routes. Depending on the results of the analysis this module
may generate alert messages with different priority levels depending on the severity of the problem.

The BGP Monitoring Tool is the client portion of the system. Then BMT serves as the event manager
and message interpretation facility for the user. Messages coming from BCADs are decoded and translated
into human readable format using a local event interpreter database. This tool allows the user to establish
a connection to one or more BCADs in order to receive intrusion warning or alert messages from public
Network Access Points and from private peering sessions simultaneously.

BGP
Monitoring
Tool

AS1673

AS3561

BGP BCAD
Monitoring
Tool
BGP
Monitoring
Tool

Figure 1: Operational concept of the ERIDS

Figure 1 depicts the components of ERIDS and their interactions in a pausible deployment scenario.
Consider three national backbones with both public peering and private peerings sessions. As they exchange
BGP UPDATES, the BCAD located at MAE-EAST constantly collects BGP messages. In the meantime
customers of the system, the NOCs for AS1, AS1673 and AS3561, connect to the BCAD using the BGP
Monitoring tool.

WHile collecting BGP messages the BCAD also analyzes the contents of BGP messages collected against
the routing policy information contained in its databse and if necessary it generates event messages. Since

25

the BCAD may serve multiple customers, it first replicates the event messages and forwards them to each
customer NOC.

Customers may want to receive the raw data collected by a BCAD at a NAP or at a private peering
location. This is appropriate since customer NOCs may want to due exhautive post-mordem analysis of the
data. In figure 1 we see how AS1 is operating in this fashion. It is receiving processed data containing only
event messages from the NAP’s BCAD while it is receiving entire IP Datagrams collected by the BCAD
located at the private peering point. These datagrams are then processed by local BCADs and any events
may be displayed by the motnitoring. Like the BCAD. the BMT can handle multiple data streams from
multiple sources.

The communication between BCADs or between BCADs and BMTs is protected using SSH [ref]. The
system uses SSH to maximize delpoyability. The architecture does not depend on the protocol suite used
to protect the data stream. IPSec [ref] can be and perhaps should be used as soon as it becomes widely
deployed and supported in the Internet. The use of IPSec with automatic key mangaement and certificates
to proof the identities of both BCADs and BMTs is an optimal solution from a security perspective.

3.1 BGP Capture and Analysis Daemon (BCAD)

The BCAD has three modes of operation. First it can operate as a single BGP capture facility. In this
mode, BCAD captures and stores BGP packets. Secondly, BCAD can operate as a Intrusion Detection
Engine alone. In this mode, BCAD receives BGP packets from probes or other BCADs, analyzes them and
generates event messages. BCAD may also operate as both a probe and IDE combined. For example, one
machine can use BCAD to collect BGP packets and analyze them locally.

BCAD has the facility to replicate and push multiple BGP packets or event messages simultaneosly over
distinct connections to BMTs. This multiplexing facility allows BCAD to accept multiple remote connections
from different ERIDS customers. Customers may decide to request that either all packets or event messages
are sent to their BMTs. This enables network operators to monitor from the same location several network
access points and private peering sessions simultaneously.

3.1.1 Probe

The probe module collects only IP Datagrams containing BGP messages using an interface configured in
promiscous mode. The pobes first verifies that the packet received is not fragmented. Fragmention occurs
when the IP datagram is larger in kilobytes than the Maximum Transmission Unit (MTU) of the interface.
Because of this possiblity the probes must first identify any fragmented IP datagrams and re-assemble them
before continue any processing.

;From experience, we expect that occurence of IP datagrams fragmentation will be minimal. This is
the case because typically applications that use TCP such a BGP route daemon avoid fragmentation by
generating TCP segments smaller than the MTU size. TCP implementations typically avoid causing IP
fragmentation by setting their Maximum Segment Size (MSS) option to be less than or equal to the MTU
minus the IP header size. This option is used to inform both parties in a TCP connection of the maximum
TCP segment size.

Probes also deal with the possibility of TCP segment fragmentation. We expect this to occur often
especially during the establisment of a peering session when large UPDATE messages are exchanged. In
BGP the maximum size of a message is 4096 bytes therefore there will be circumstances where the probes
will need to re-assemble TCP segments.

Once a particular BGP packet is assembled in its entirety, the probe extracts BGP message type from
the BGP message header, the NLRI, AS-PATH and Next Hop information from the body of the packet. The
source MAC and IP addresses are extracted from the frame and IP datagram headers, respectively. The
probes combine this and other ephemeral information such as timestamps, into one message. This is done
for every single BGP message of interest (OPEN, UPDATE, NOTIFICATION) exchanged between BGP
peers located at the same subnet where the probe resides. The control logic in BCAD decides if the data

26

is transmitted to it's IDE for analysis, sent over a link to one or more remote BCADs for analysis or both.
This decision depends on the configuration mode of the BCAD.

3.1.2 Database
3.1.3 Analysis Engine

The Intrusion Detection Engine (IED) is the core of the system. It takes input from the Intrusion Probes and
local databases to analyze the external routing information received by BGP speakers in search of anomalies.
The engine searches for discrepancies between the routing information received from different peering points
(NAPs or private) and the policy information stored in the databases.

The IED has two sub-components: The Analysis and the Response Module. The analysis of the BGP UP-
DATES is the responsibility of the Analysis Module. This software module translates route and autonomous
system objects from the databases into a format suitable for comparison with the values found in the fields
of the BGP messages. Consider the following example. Assume that the AS Object in a Routing Policy
Database for autonomous system 266 appears as follows:

The routing policy for AS 266 states that this autonomous system accepts only one route from AS3561,
but it accepts all routes from AS237 originated in AS237. Note from Figure 2.0, that the routes which
AS266 redistributes to its neighbors also vary. For instance, AS5266 announces all routes to AS3561 except
the routes for AS237. Also AS237 is not given routes from AS3561. Presumably, AS237 and AS3561 peer
with each other and don’t need to learn their respective routes from AS266.

Under such a routing policy, an Intrusion Detection Engine in AS3561 could detect whether a BGP-4
speaker in AS266 (or an impostor) is sending UPDATE messages to AS237 with routes from AS3561 and
inform the Network Operations Center of the event. The Analysis Module can also execute commands such
as TRACEROUTE and PING to verify the reachability to network prefixes.

The Response Module determines the appropriate action or set of actions that the system will take based
on the event identified by the Analysis Module. The module performs a search in its local database for a
particular event in the events file until it finds a match. The event file contains event objects defined for the
system. Consider the event object defined in Figure 3.0:

The Response Module uses the pattern field provided by the Analysis Module to locate the appropriate
event. The event object contains security level labels and other descriptors indicating the appropriate actions
to take in case such an event occurs. The response module provides the event output to the Event Manager.

3.2 BGP Monitoring Tool

The Event Manager graphically displays the output of the Response Module. The manager generates event
logs for history, audits and debugging. It also provides an interface for configuring the alarm thresholds,
contact lists, and other actions.

4 Database Structure

4.1 Use of Internet Routing Registries as a Database for ERIDS

We had planned to use the information in the IRR as authoritative for creating the event database. Our
original approach was based on the belief that the IRR was populated with NLRI data and AS routing
policies. Due the voluntary nature of the IRR effort, we understood that not all organizations register their
routes in the databases making these databases inconsistent and out of date. Qur initial assessment turned
out to be too optimistic. The NLRI data in the IRR is mostly complete; however, the AS policy data has
large gaps. We needed some way to fill in those gaps, or we will have no ability to verify the validity of route.
As a result of our research efforts we determined that we need to choose a different approach for creating
the event database for ERIDS since the Routing Policy Information stored in the Internet Routing Registry
database is imcomplete.

27

4.2 Detailed Analysis of IRR data

We collected data from a number of sources to analyze the completeness of the IRR. We obtained copies of
the several IRR databases from Merit. We retrieved copies of the state of the Route Arbiters at MAE-East
and MAE-West for a period of a week from IPMA (the Internet Performance Measurement and Analysis
project), which contain the routes intended to be used by all providers at those exchange points. Finally,
we extracted routing information from a trace of BGP traffic captured at MAE-East in January, giving us
some undigested route information.

We first created a summary of the AS policy information available, by comparing the list of ASes from
the route arbiters against the IRR. As of late September, there were 3495 AS’s listed in the IRR. There were
1198 AS’s appearing in BGP announcements received at MAE-East and MAE-West’s route arbiters which
were not registered in the IRR. We then measured the completeness of the IRR by using a simplified, static
variant of our planned analysis of routing paths. A route announcement’s AS PATH attribute is a list of all
the ASes a packet must pass through to follow that route.

We can presume that we can check each AS’s routing policy by comparing it and its neighbors in an
AS PATH against the policy information in the IRR. The IRR’s AS-in and AS-out fields describe this
information, with AS-in representing the route acceptance policy for an AS and AS-out representing the
route distribution policy. We took every route that we retrieved from the route arbiters for MAE-East and
MAFE-West and considered them as pairs of ASes to check them against the AS-in fields registered in the
IRR.

Of all pairs of ASes appearing in these route announcements received by the route arbiters, less than 40%
agreed with the record in the IRR that one AS would accept routes from another AS. Of 191262 such pairs,
79595 matched records in the IRR databases, a hit rate of 38%. The percentage rises to 64% (121817 hits)
if five (5) AS’s are assumed to have perfect policy information (GTE Internetworking, AT&T, IBM Global,
internetMCI and Sprint). The result bodes well for future growth of the IRR, and of the ERIDS project’s
ability to get most of the data it requires from the IRR some time in the future.

4.3 New Approach

Based on these findings We propose to discover by examination and supplement the data missing from the
IRR by gathering sets of BGP messages between AS peers (should this be “between BGP speakers”??). We
will use methods of statistical confidence (number of samples collected and the values of the samples) to
determine the number of messages to capture and whether the data extracted from the messages is of high
confidence. If the data extracted is of high confidence, it will be used to augment the data obtained from the
IRR. If the data is not of high confidence, appropriate actions will be taken to either increase its confidence
or mark it as suspect.

Positive aspects: - Allows the use of existing IRR data - Offers migration path to using only IRR data as
the registry compliance increases - Uses current BGP data as basis for “ground truth” - Allows the existing
IRR data to be verified against the working BGP derived data (allowing the flagging of stale IRR data)

Residual Issues

The problem inherent in using a history database approach is that it is difficult to detect anomalous
behavior when there is nothing other than that very behavior to compare the anomalies against. Much care
will be required in choosing the data to collect and the trust we place in that data.

28

5 Data Processing

6 System Performance

6.1 Detection Accuracy

6.2 Volume of Data

The amount of data transported from the probes to the Intrusion Detection Engine depends on the number of
UPDATES seen at a particular monitoring point. At a populated Network Access Point such as MAE-EAST,
where many National Backbones and first tier ISPs peer with each other, the volume of BGP UPDATEs
is definitely high. BGP-4 speakers send UPDATE messages whenever a route flaps. Route flapping occurs
whenever a BGP speaker sends an UPDATE message to change the status of a prefix due to reachability
problems (link problems, mis-configurations, etc.). Routers also send UPDATESs to announce newly formed
routes to new prefixes.

The header of a BGP message is 19 octets long. The payload size is variable and depends on the number
of prefixes in the Network Layer Reachability Information field, the number of path attributes and the
number of withdrawn routes in case the UPDATE is withdrawing routes. BGP messages are encapsulated
in TCP segments (20 octets) and in IP datagrams (20 octets). Assuming average BGP UPDATE payloads
of 40 octets, the average UPDATE generates around 100 octets of data.

Statistics generated from data collected from route servers at major NAPs by ISI during the period
of March-August 1997 indicate that over this period, combined prefix UPDATEs (including both route
announcements and withdrawals) peaked at 47.5 UPDATEs /sec with an average of 18 UPDATESs/sec. Using
the average number of UPDATEs/sec and an average UPDATE size of 100 octets roughly yields 160 Million
octets per day. A hard disk with four Giga-octets of storage capacity could keep up with this volume of data
for 20 days or so. It would seem that the Intrusion Probes should be capable of handling and storing this
volume of data.

However, the problem of link consumption for the transmission of the data back to the Intrusion Detection
Engine still remains. Assuming 160 Million octets worth of data and ignoring transmission and round trip
delays, it would take approximately 15 minutes to download a days worth of data from one probe to the
Intrusion Detection Engine at T1 speeds (1.544 Mbits/sec). Multiply this number by the number of probes
deployed in the network (assume one at each NAP and FIX for a total of 12) and one sees how it would take
more than 3.0 hours to download all the data from all the 12 probes every day. This is a non-trivial amount
of network traffic and bandwidth consumption.

7 Security Considerations

Acknowledgments

The authors thank Steve Kent and John Zao for their participation in several requirements discussions.
Our gratitude to Charlie Lynn, Matt Fredette, Alden Jackson, Dave Mankins, Marla Shepard and Pam
Helinek for their contributions to this work. We thank Mary Hendrix and Craig Partridge for reviewing this

manuscript.

References

(1] J.C. Mogul, R.F. Rashid, and M.J. Accetta. “The packet filter: An efficient mechanism for user level
network code”. Technical Report 87.2, Digital WRL, 1987.

(2] S. Kent, R. Atkinson, “Security Architecture for the Internet Protocol”, RFC2401, November 1998.

29

(3] D. Piper, “The Internet IP Security Domain of Interpretation for ISAKMP”, RFC2407, November 1998.

(4] M. Condell, C. Lynn, J. Zao “Security Policy Specification Language”, Internet Draft draft-ietf-ipsec-
spsl-00.txt, November 1998

[3] T.V. Lakshman and D. Stiliadis. “High Speed Policy-based Packet Forwarding Using Efficient Multi-
dimensional Range Matching”. Proceedings of ACM Sigcomm 98., Sept 1993

(6] H. Edelsbrunner, L.J. Guibas and J. Stolfi. “Optimal point location in a monotone subdivision”. STAM
Journal on Computing, 15:317-340, 1986.

(7] V. Srinivasan, G. Varghese, S. Suri, W. Waldvogel. “Fast and Scalable Layer Four Switching”. Proceed-
ings of ACM Sigcomm 98., Sept 1998.

(8] L. Sanchez, M. Condell “Security Policy System”, Internet Draft draft-ietf-ipsec-sps-00.txt, November
1998

[9] S. Kent, “Security Association Map”, Private Communication, August 1997.

30

ERIDS Design Document

Defense Advanced Research Projects Agency
Information Technology Office

External Routing Intrusion Detection System
DARPA Order No. G403/00

Contract No. F30602-98-C-0242

Prepared by: BBN Technologies
10 Moulton Street
Cambridge, MA 02138

For: Air Force Research Laboratory
Information Directorate
26 Electronic Parkway
Rome, NY 13441-4514

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

31

Qutline
Collection
Filtering
Flap Reduction
Message Format
Transmission
Database
Schema
Construction
Authoritative DB
History DB
Stability
Data Structure
Analysis
Event Generation

o Collection

We start by listening to BGP traffic on the wire. We use the libpcap
library to listen to all BGP traffic (TCP port 179) and send those packets
to user space.

At program startup, we initialize the libpcap library with a call to
pcap_open_live(). We use pcap_compile() to specify a description

of the BGP traffic to monitor, and pcap_setfilter() to put it into use.
The libpcap library sends data to the program through calls to
pcap_dispatch() in the returned pcap_pkthdr struct and a flat u_char
array of packet payload data.

The probe thread is event-driven on pcap_dispatch(). We will *compress
and *transmit each packet or group of packets through a callback
routine passed to pcap_dispatch().

The BPF code to select all traffic to a specific port is included in the paper
on BPF (McCanne, Jacobson, Winter 1993 USENIX). It will return entire
ethernet packets matching IP/TCP/BGP in the flat u_char array, and a
timestamp and length in the pcap_pkthdr structure.

o Filtering

Now that the BGP packets are in memory, we will verify that they are in
properly-formatted TCP packets and remove extraneous messages

and fields from the messages to save bandwidth. We save the message type,
source MAC and IP addresses, and the NLRI, AS_PATH and Next Hop information.

We scan the (flat u_char array) TCP packet for amomalies. We distill down
the AS_PATH information, collapsing all AS_SEQUENCE records into

one record and all AS_PATH records into ome record. We then copy
information from the packet header and body into a

newly allocated buffer.

32

o Message Format

The filtered messages will be sent to the IDEs in a TLV-based message
format shown below. A well-formed message must consist of a timestamp,

a BGP type, a MAC address, a Source address, and may contain zero or more
Withdrawn Routes, NLRI, AS Path and Next Hop fields.

0 1 2 3
01234567890123456789012345678901

s SR
+=F-t=7 Ut hage o

Pty

3 PR I WS RS T
+—t—t—tr=t- = b adunls dhdy bty ahde stune siusie shunhe s 4

LENGTH

[T ST Sy SO TG NP S X
b ity bt Aok shats dienie dhent M o

TLV sequences

e e o b e e e o o et 1 o e e
s ghade ks it sy inats shade ek atnde Shah

+ — +

PRSI S S R
+=tr—r-—T

e e o e o e e m e -
+—<+ Lateuts dhads shants shunie +

—_+ — +
— + — +

A TLV sequence comsists of 1 byte of Type, 0 or 1 bytes of Length, and

a variable number of bytes of Value. Those Types which have well-defined
sizes for the associated data will skip the Length field by setting the
high-order bit of the Type field.

0 1 2 3
012345678901234567890123 45678901
101 TYPE | LENGTH | VALUE
ISR T e SRR RS S S LSS S SR
or

RTINS S S B RS S S S S et A
11l TYPE ! VALUE

+
+
E

+
+
+
+
.{

E

4

E

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

b=ttt

The following TLV sequences are defined:
1. Timestamp

A Timestamp is a standard Unix time_t field, 4 octets in length, denoting
seconds since 00:00 GMT Jan 1 1970 that this message was observed.

TYPE: (01) hex

LENGTH: None, well-understood (flag is 1)

VALUE: 4 octets of time

2. BGP Type

A BGP Type field is the 1 octet BGP Type from the captured message.
TYPE: (02) hex

LENGTH: None, well-understood (flag is 1)

VALUE: 1 octet of BGP Type

3. MAC Address

.33

A MAC address is a 6 octet link-layer address of the sender of the captured
message.

TYPE: (03) hex
LENGTH: Nome, well-understood (flag is 1)
VALUE: 6 octets of MAC address

4. Source IPv4 Address

A Source IPv4 address is the 4 octet IPv4 address of the sender of the
captured message.

TYPE: (04) hex
LENGTH: None, well-understood (flag is 1)
VALUE: 4 octets of IPv4 address

5. Source IPv6 Address

A Source IPv6 address is the 16 octet IPv6 address of the sender of the
captured message.

TYPE: (05) hex
LENGTH: None, well-understood (flag is 1)
VALUE: 16 octets of IPv6 address

6. Next Hop IPv4 Address

A Next Hop IPv4 address is the 4 octet IPv4 address represented by the
Next Hop field in the original captured message.

TYPE: (06) hex
LENGTH: Nome, well-understood (flag is 1)
VALUE: 4 octets of IPv4 address

7. Next Hop IPv6 Address

A Next Hop IPv6 address is the 16 octet IPv4 address represented by the
Next Hop field in the original captured message.

TYPE: (07) hex
LENGTH: None, well-understood (flag is 1)
VALUE: 16 octets of IPv6 address

8. AS Path

An AS Path is a list of AS Path elements, each of which is a TLV tuple.
Each element is a group of 2-octet AS numbers, preceded by a type and
a length. The two types are: AS_SEQUENCE (01 hex) and AS_SET (02 hex).
The length is a one-octet field.

TYPE: (08) hex
LENGTH: As specified
VALUE: Variable length of AS Path elements.

g. Withdrawn IPv4 Routes

Withdrawn Routes is a list of address prefixes (5 octets each, giving
a network address and network size).

TYPE: (09) hex
LENGTH: As specified
VALUE: Variable number of 5 octet IPv4 address prefixes.

10. Withdrawn IPv6 Routes

Withdrawn Routes is a list of IPv6 address prefixes (17 octets each, giving
a network address and network size).

TYPE: (0A) hex
LENGTH: As specified
VALUE: Variable number of 17 octet IPv6 address prefixes.

11. IPv4 NLRI

Network Level Reachability Information is a list of IPv4 address prefixes
(5 octets each).

TYPE: (OB) hex
LENGTH: As specified
VALUE: Variable number of 5 octet IPv4 address prefixes.

12. IPv6 NLRI

Network Level Reachability Information is a list of IPv6 address prefixes
(17 octets each).

TYPE: (0C) hex
LENGTH: As specified
VALUE: Variable number of 17 octet IPv6 address prefixes.

o Flap Reduction

We are concerned about the volume of BGP traffic during a full-scale
route storm, where many routes are flapping between routers on the

local network. We would like to suppress spurious routing announcements
while not suppressing or delaying useful information.

We will cache route messages to accomplish this. This cache will store
our TLV format BGP messages (which are timestamped) along with a flag
indicating whether the message has been transmitted or mot. It will
be indexed on IP source address and the NLRI field.

35

When we receive any BGP message, we check the cache for a matching
message. If we do not find a message with the same IP source address
and an exactly matching NLRI field, we send the message on for
transmission and insert it into the cache, marked as having been
transmitted. If we do find a matching message in the cache, then we
replace the entry in the cache with the current one, marked as not
transmitted, and we do not send the message on for transmission.
Periodically we scan the cache, checking message timestamps. If a
message is older than a threshold, we remove it from the cache and
transmit it if it is marked as not having been transmitted.

This will suppress any route flaps with periodicity less than the
threshold, and correctly pass on the stable state (no flaps within one
threshold) of the route flap after one threshold time.

This will be implemented as a series of chaining hash tables, one for each 30
second interval within the threshold time and one extra. At any time,
one will be ’current’ and the others will be previous 30-second times.
Insertion is always performed on the current hash table. Lookups check
each hash table starting with the current ome. When an entry is replaced
with a newer entry, the old one is removed from the table it is in and
added to the current table. Every 30 seconds, the least current table is
cleaned, since all the entries in it are at or above the threshold time.
All entries are checked for their transmitted flag, and if they have

not been transmitted they are sent off for transmission. Once the table
is cleaned it is made the new current table.

o Transmission

To get the data between a probe thread and several IDE threads, local or
remote, we need to

take the packets from the buffer, put them through a multiplexer

and ship the packets on already established secure connections to the
IDEs, and pull them out and put them back in the data structure

on the other end.

First, we use the buffer as a flat byte stream, since it has been
packed into our message format.

Second, our multiplexer sends copies of the data to each of the open
IDE connections made to our sshd.

Third, the IDE at the other end of each connection pulls the routing messages
from the ssh connection and puts it into a local buffer. We then hand
the buffer on to the analysis engine of the IDE.

We have an sshd on the machine and an ssh client in the BCAP. The sshd
is used to accept comnections from BCAP/IDEs requesting raw BGP data and
from UIs requesting processed events. We categorize them on connection
time by having the login handshake identify the data stream requested.

36

The ssh client is used to request raw BGP data from another BCAP/probe.
o Multiplexer

Multiplexer code brought over from PBSM will handle taking each message
and sending it out to each probe subscriber, and taking each event and
sending it out to each event subscriber.

o Database

We keep a copy of the IRR and of the HDB locally. Each is composed of three
parts (NLRI, AS and Next Hop). We store each of these six in a separate hash
table, optimized for rapid access.

. Schema

The NLRI table includes: NLRI (key), AS owning that NLRI, and confidence data
(time first seen, time last changed, stability score). NLRI is the network
address for that route; AS owning is the autonmomous system registered as
owning (and having the right to announce) that AS.

The AS table is 2-dimensional. It includes: AS (key), AS-related (key),

AS-in policy, AS-in stability score, AS-out predicate, and AS-out stability
score. AS-in policy is a field storing the RPSL (routing pelicy specification
language) value for the policy for an AS-in relationship between the two ASes.
If null, they have no such relationship. AS-out predicate is a true/false
value saying whether these two ASes have an AS-out relationship. Stability
scores are detailed in the next section; simply, it is a measure of how stable
and thus how trustworthy the relationship (AS-in or AS-out) has been.

The Next Hop table includes: Network address (key), MAC address, AS gatewayed,
and confidence data (time first seen, time last changed, stability score) .
AS gatewayed is the AS using that Next Hop for forwarding.

. Building
Authoritative Database

We build the copy of the IRR (ADB) regularly by taking a fresh copy of the text
dumps from Merit and loading them into the IDE. We only store the NLRI,

AS and Next Hop records; we merge the half-dozen database files and

remove duplicates, we count the number of records required, size hash

tables to optimal sizes and copy the data into the hash tables.

AS-in is used to refer to a relationship between two ASes where AS A accepts
routing information from AS B. AS-out is the converse, where AS A

sends routing information to AS B. Conceptually each is a 2-dimensional
grid with a checkmark (and policy and confidence information) at each
intersection.

We will store both in a single hash table using both AS A and AS B as keys.

37

For each AS, we read in the AS-in and AS-out lists, and record each
AS-in by (AS, AS-related, AS-in policy and each AS-out by

(AS, AS-related, AS-out predicate=true). AS and AS-related are both
keys; we hash on the combination and verify both each time we check the
hash table.

The NLRI and Next Hop tables are single-key, so we hash on network
address and prefix.

History Database

We build the history database (HDB) offline with the MDTool, and we can update
it online with the BCAP. In both cases, we record data we have seen and
recreate NLRI, AS-in, AS-out and Next Hop data as in the ADB, with the
addition of some stability information to tell us how reliable this data

seems to be.

We can tell an NLRI simply because each route announcement announces one
or more. We can extract each address and the AS originating it from the
message, and update the confidence data in the history database based on
that information.

Next Hops are very similar to NLRIs; each route announcement contains one
and it’s associated with the AS that most recently announced it. We take
the extra step of storing the MAC address for each Next Hop, correlating
the MAC and IP addresses for later use in analysis.

We can determine AS-in and AS-out relationships from AS paths because
if an AS A forwards a routing message coming from AS B, AS B must be
in AS A’s AS-in list and AS A must be in AS B’s AS-out list. Thus we
can create records of AS-ins and AS-outs we have seen. We can further
build an AS-in policy statement by concatenating all the NLRIs we’ve
seen using that AS-in stipulation.

We store them and access them in the history database’s hash table in
the same way as the ADB’s hash table, adding stability information:
AS-in is (AS, AS-related, AS-in policy, stability score) and AS-out
is (AS, AS-related, AS-out predicate=true, stability score).

. Stability

The history database will be keeping stability scores for NLRIs, Next Hops,
AS~-ins and AS-outs. These are obtained in two ways:

For NLRIs and Next Hops, we keep a score (real, range O to 1) which decays
to 1 exponentially, and is decreased by a fixed percentage of its current

value each time the NLRI or Next Hop changes.

For AS-ins and AS-outs, we record AS-ins and AS-outs seen that day and
once a day we decay the score to 1 if we saw it and 0 if we did not.

38

r——————

By ’decay to 1’ we mean calculate s’ as l-exp(-s-ct), where t is the time
interval, c is a constant and s is our score. 'Decay to 0’ is s’=exp(-s—ct).

. Data Structure

The hash table will not change size much without being rebuilt, so we
do not have to Worry about growing the table.

When we initially create the table, we want to know how large it needs
to be, so we will either need to make two passes through the data or
build an intermediate data structure.

We will use the 4.4 BSD db library’s hash table routines for the in-memory
hash tables. There will be six of them: one each for NLRI, AS pairs and
Next Hop for the Authoritative and the History databases.

o Analysis
We analyze and score each BGP message as follows:

Apply ad hoc filters.
We invoke RPSL to screen out specific ASes and NLRIs which do not exist
Configurable RPSL script
Deny non-routed networks and out-of-range networks and ASes
We will have a configuration file for what BGP options are allowed by the
protocol but never implemented; if they are implemented in the future the
configuration file can be edited. Example: BGP speaker is not next hop.

Check the NLRI and owning AS against the databases.
Look up the NLRI in the ADB.
If the NLRI is in the ADB, then
Compare the resulting record’s AS-owning field against the origin AS
(first AS in the AS Path) in the BGP message.
If the ASes agree, then
assign it a score of 100% and
skip to the next step.
If the ASes disagree, then
assign it a score of o%,
send a Policy Violation:NLRI, Priority i event, and
skip to the next step.
If the NLRI is not in the ADB, then
Look up the NLRI in the HDB.
1f the NLRI is in the HDB, then
Compare the resulting record’s AS-owning field against the first
AS in the AS Path in the BGP message.
If the ASes agree, then
assign the message a score equal to the stability score in the HDB
NLRI record, and
skip to the next step.
If the ASes disagree, then
assign the message a score equal to the inverse of the stability

39

score in the HDB record, and
skip to the next step.
If the NLRI is not in the HDB, then
assign it a score of 0%,
send a New Entry:NLRI, Priority 3 event,
if HDB modification is enabled, create a new HDB entry for the new
NLRI with a stability score of 0%,
and skip to the next step.

Check each AS_PATH against the databases.
Break up the AS_PATH into overlapping pairs of ASes.
For each AS pair,
Look up the AS pair in the ADB.
If both an AS-in policy and the AS-out predicate are set in the ADB,
Check the AS-in policy in an RPSL interpreter against the NLRI and AS
Path in the BGP message.
If the policy matches, then
skip to the next step.
If the policy does not match, then
assign the message a score of 0%,
send a Policy Violation:AS-in Priority 1 event, and
skip to the next step.
If either an AS-in policy or an AS-out predicate is not set in the ADB,
777
If there is no record for that AS pair in the ADB,
Look up the AS pair in the HDB.
If the AS pair record is in the HDB, then
Check the resulting record’s AS-in policy field against the first
AS in the AS Path in the BGP message.
If the policy agrees, then
multiply the message’s score by the AS pair stability score in
the HDB AS pair record, and
skip to the next step.
If the policy disagrees, then
multiply the message’s score by the AS pair stability score in
the HDB AS pair record,
if HDB modification is enabled, add the NLRI of the present
BGP message to the HDB AS pair AS-in policy field
(as ’OR <NLRI>’), and
skip to the next step.
If the AS pair record is not in the HDB, then
assign the message a score of 0%,
send a New Entry:AS-in Priority 2 event,
create a new HDB entry for the AS pair with a stability score of 0%
and an AS-in policy of ’NLRI’,
and skip to the next step.

Check the Next Hop addresses and owning AS against the databases.
Look up the Next Hop in the ADB.
If the Next Hop is in the ADB, then
Compare the resulting record’s AS-owning field against the speaker’s AS

40

(last AS in the AS Path), and the record’s IP address against the
speaker’s IP address in the BGP message.
If the ASes agree and the IP addresses agree, then
Look up the Next Hop in the HDB.
If the Next Hop is in the HDB, then
Compare the resulting record’s AS-owning field against the
speaker’s AS (last AS in the AS Path), the record’s IP address
against the speaker’s IP address, and the record’s MAC address
against the speaker’s MAC address.
If the ASes agree and the addresses agree, then
skip to the next step.
If the MAC addresses disagree, then
send a Address Change:Next Hop Priority 1 event,
and skip to the next step.
If the ASes disagree or the addresses disagree, then
assign the message a score of 0%,
send a Policy Violation:Next Hop Priority O event, and
skip to the next step.
If the Next Hop is not in the ADB, then
Look up the Next Hop in the HDB.
If the Next Hop is in the HDB, then
Compare the resulting record’s AS-owning field against the
speaker’s AS (last AS in the AS Path), the record’s IP address
against the speaker’s IP address, and the record’s MAC address
against the speaker’s MAC address.
If the ASes agree and the adddresses agree, then
assign the message a score equal to the stability score in the HDB
Next Hop record, and
skip to the next step.
If the ASes disagree or the addresses disagree, then
assign the message a score equal to the inverse of the stability
score in the HDB record,
send an Untrustworthy:Next Hop Priority 1 event, and
skip to the next step.
If the Next Hop is not in the HDB, then
assign it a score of 0%,
send a New Entry:Next Hop Priority 0 event,
if HDB modification is enabled, create a new HDB entry for the new
Next Hop with a stability score of 0%,
and skip to the next step.

Tally up the score and pass to the event generator.
o Event generation

We now have BGP packets with associated scores. We now filter out all
packets with sufficiently high scores, and categorize the remainder with
what factor(s) caused the low score. Then, we convert the relevant
portions of the packets to text and ship them to a multiplexer,

which forwards the events to any Uls requesting events. In text form, the
UI filters the events based on message fields deemed relevant by the user.

al

Each event will have the following text fields:

Event Type, Event Subtype will identify the category of event
(New Entry, Policy Violation, etc) and the subcategory.

"Event! Type: New Entry; Subtype: NLRI;"

Priority will give an estimate of importance. Number from O to 3, O important.

"Priority: 3;"

Relevant Field will give the erroneous field.

"Relevant Field: NLRI;"

Score will give the score for the packet.

"Score: O4;"

Details will give a human-readable but well-defined description of the
problem and possible solutions.

"Details: This network has not been seen before. Check vith the owner
to see if it should be published‘;"

Message Summary will summarize the information in the packet.

"Timestamp <value in decimal>, Source IP <dotted octet>, Source MAC
<coloned hex octet>, NLRIs <series of network addresses>, AS Path
<series of AS values>, Next Hop <dotted octet>."

The following is the list of events:

New Entry (New NLRI, New AS-in, New AS-out, New Next Hop)

These are registered when a data element was not found in the databases.
This occurs if such a routing message references an object which is not in the
ADB and has not been seen before. This may or may not be alarming,
and so is filterable.

Type: New Entry

Subtype: NLRI, AS-in, AS-out, Next Hop

Relevant Field: NLRI, AS Pair or Next Hop

Score: low

Details: This <subtype> has not been seen before. Please check it.

Policy Violation (NLRI Policy Violation, AS-in Policy Violation, Next Hop
Policy Violation)

If a field in the routing message disagrees with the information in the ADB,
it’s a policy violation. This is the most clear-cut error we can generate.
(Note: we can’t have an AS-out Policy Violation, since we don’t have a
trustworthy AS-out denial facility.)

Type: Policy Violation

Subtype: NLRI, AS-in, Next Hop

Relevant Field: NLRI, AS Pair or Next Hop

Score: 0V

Details: The <field which tripped the Policy Violation> is against the
policy for this <relevant field>.

Untrustworthy (NLRI Untrustworthy, AS-in Untrustworthy, AS-out Untrustworthy,
Next Hop Untrustworthy)
If our analysis and scoring algorithm, operating on the routing message and
the history database, produce a score below our trustworthiness watermark,
we return one or more Untrustworthy messages, identifying the field(s)

42

found untrustworthy and the score(s).

Type: Untrustworthy

Subtype: NLRI, AS-in, AS-out, Next Hop

Relevant Field: NLRI, AS Pair or Next Hop

Score: score of packet

Details: The <relevant field> in this packet did not sufficiently agree
with past behavior.

Address Change (Next Hop Address Change)

If the MAC address in the BGP message doesn’t agree with the MAC address
in the HDB, we produce this event. The suspicious address change indicates
either a hardware change (ethernet card replaced) or spoofing of routing
updates.

Type: Address Change

Subtype: Next Hop

Relevant Field: MAC Address

Score: 0%

Details: The BGP speaker’s MAC address has changed. Please make sure
the speaker is not being spoofed.

BGP Monitoring Tool Design Document

Defense Advanced Research Projects Agency
Information Technology Office

External Routing Intrusion Detection System
DARPA Order No. G403/00

Contract No. F30602-98-C-0242

Prepared by: BBN Technologies
10 Moulton Street
Cambridge, MA 02138

For: Air Force Research Laboratory
Information Directorate
26 Electronic Parkway
Rome, NY 13441-4514

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

Qutline

1.
2.

B> W
»P»#OOMNMMNMI\JOO

S
W o N

O N T N
wwwwmwwwww»—a

mmmmmmmmmmommwmmo»p.b

N~ O ;W

Introduction
Implementation
Development Environment
Modes of Operation
Message Format

Log File Format
Message Database File
Configuration File
Connectivity
Application Display
Menus

File

Edit

.2.1 Find

Options

Filters

.1.1 BCAD

.1.2 Event Messages
.1.3 Time

.1.4 Priority

.1.5 Score
Configurations
.2.1 Aliases

.2.2 Display

.2.3 Event Message Dbase
.2.4 Logging

.4 Connect
.5 Windows
.6 Help

Data Structures

.1 Major Structures

.2 Supporting Structures
.3 Type Definitions

.4 Defines

.5 Global Variables

Dialog Layout Descriptors
Alias Dialog

Display Dialog

Logging Dialog

Event Dbase Dialog
BCAD Dialog

Time Dialog

Message Dialog
Priority Dialog

Score Dialog

.10 Find Dialog

6.10.1 Find:Time Dialog
6.10.2 Find:Score Dialog

.11 Password Dialog

45

O R I rArUrer PSS SR S 8 D B o e L s o

1.0 Introduction:

This document describes the design, implementation, and operation of
the BGP Monitoring Tool (BMT). The BMT is a display front end for the
BCAD system. The BCAD generates event messages based on BGP traffic
received and the existing filtering rules database. These event
messages are {logged locally and also} send to all connected BMTs.

The BMT has the ability to connect to multiple BCADs simultaneously
and display all received messages in a common display window. Various
filters can be applied to the received event messages to allow the
operator to focus on specific aspects of the received information.

The resulting filtered data is available for logging by the BMT.

2.0 Implementation:

This section details the tools and components used to design and
implement the BGP Monitoring Tool.

2.1 Development Environment:

The BMT is written in C and compiled using Gnu’s gcc (version
2.7.2.3). X-windows is the required windowing system for BMT. The
display (windowing) graphics are generated using the Gimp Tool Kit
(gtk version 1.0.6). Debugging will be performed with Gnu’s gdb
(version 4.17). The BMT is designed to be able to run on any Unix
implementation that supports Berkley sockets. The application may
require compilation on the desired platform before being able to be
run.

2.2 Modes of Operation:

The BMT will have two modes of operation: on line and off line. The
on line mode of operation describes the real time event message
collection performed by the BMT. The BMT receives and logs all event
messages transmitted by the BCADs to which it is subscribed. The log
file created during on line operation is an unfiltered record of all
event messages received by the BMT. The incomming event messages will
be subject to filtering by the BMT. The filtered results will be
displayed in the BMT’s event window. The contents of the BMT’s event
window will NOT be able to be saved during "on line" operation.

The off line mode allows for the processing of event message log

files. The result of the off line processing is displayed in the
BMT’s event window. The contents of the BMT’s event window can be

46

saved in the standard log file format (described in section 2.3).

2.3 Message Format:

The mesage format of the messages passed from BCAD to BMT is defined
in the ERIDs design document (See: ERIDS CVS repository for:
doc/design.txt). The message contents include:

[Message Typel
[Message Sub-Typel
[Priorityl

{Scorel

[<IDE TLV MESSAGE>]

Consider the TLV message a place holder. This format should most
likely be a binary format. The TLV contains:

{Time stamp]

[Source IP Address]
[Source MAC Address]
(Message type & sub-type]
[NLRIs]

{AS Path]

2.4 Log file Format:

There is a set log file format that includes a variable length header
followed by a variable length 1ist of event messages. This is a
binary format. The log file header format is as follows:

[File id] - 4 bytes

{ Version#] - 2 bytes

[Header Length] - 2 bytes

[Filter List] = 77 (See Header Length)

[Separator String] - 80 bytes ("HRHESRERE")

(Message List] - Remainder of file
[Message] - variable
[Message Catagory] - 1 byte (Catagory == Event)
[Total Length] ~ 2 bytes
[Message Type] - 1 byte
[Message Sub-type] - 1 byte
[Priority] - 1 byte
[Score] - 1 byte
[Relevent Field] - variable
[Field Type] - 1 byte
[Field Data] - See (Field Type)
[Message Summary] - variable
[Summary Flag] - 1 byte
[Total Length] - 2 bytes
[Summary List] - variable

47

[TLV MESSAGE RECEIVED FROM IDE]

< EOF >

2.5 Message Database File:

This file contains the verbose descriptions of event messages and
associated comments. The descriptions and comments are indexed by the
event message type and sub-type (hex values). The index values match
the values of the messages passed to the BMT by the BCADs. The file
format is as follows:

[File id] - 4 bytes
{ Version#] - 2 bytes (major, minor)
[Message Entry] - variable
[Message Entry Flag] - 1 byte (Identifies Entry type [Event, Info,...])
[Message Entry Size] - 2 bytes
[Message Type] - 1 byte
[Message Sub-type] - 1 byte
[Description Size] - 2 bytes
[Description] - See (Description Size)
[Comment Size] - 2 bytes
[Comment] - See (Comment Size)

< Repeat for All Message Entries >

<EOF>

2.6 Configuration File:

This file contains the configuration options for the BMT. All filter,
logging, database selection, and display color options are retained
here. The file is in ascii format. It is to be organized in a
keyword:value format. ie: "Event_Dbase_Filename event.dbase”

This first 2 items of the configuration file are require to be the
configuration file id (a pre-determined magic number) and the BMT
version #. Items that can appear in the configuration file are:
Event_Dbase_Filename text string

Help_Filename text string

Log_Filename text string

Log_File_Size int

48

Log_File_Number_Per_Day int

Time_Range From (u_long seconds, u_long u-seconds)
Time_Range To (u_long seconds, u_long u-seconds)

Message_Priority Color (R(0-255), G(0-255), B(0-255))

Filter Message_Type int

Filter Message_SubType int

Filter Address text_string

Filter AS int

Filter Message Priority int

Filter Score (from (int), to (int))

Alias {name (text_string), type (int),
address(text_string))

File Format:

[File id]
{ Version#]
s g R S RS R AR

st b B S A S R R B SR SRR R RRRBRRBRFRBBRBHRRETTFHEERREFARRE
BRFBAFFHHAFARF RS AT TRT I RHBBREFHFRRFRHFEFRFF ARG TR FEETROTETTT

<keyword:value>
Comment
<keyword:value>

<EQF>

2.7 Connectivity:

One of the salient features of the BMT is its method of connection to
the BCAD(s). The list of BCADs to which the BMT is connected
determined by the user. The Secure Shell (ssh) application will be
integrated into the BMT to enable secure/confidential connections to
BCADs. Message passing from BCAD to BMT will be performed using the
UDP protocol. Reliability of message delivery to BMTs will be
guaranteed by forwarding the UDP message stream through the
established ssh connection. Since ssh is a TCP based application, the
BCAD UDP message stream gains the reliability of the TCP (ssh)
connection.

3.0 Application Display:

The BGP Monitoring Tool follows a model that creates a window header
and menu/tool bar that controls many "sibling" windows. The parent
(menu/toolbar window) enables the creation or opening of multiple log

49

files. These files can have several sibling windows associated with
them. The parent window’s commands will be applied to which ever
window is considered to be at the top of the displayed log file
windows. This top log file window is said to have the "focus".
Dialogs or sub-windows that are opened with respect to a log file
window will be associated with the parent log file window via file
name in the window header.

4.0 Menus:

This section describes the functions available through the pulldown
menus. (See end of section for visual representation of menus.)

The functions under this menu item describe operations available for
creating, saving, and printing a log file. The content of this log
file is described by the VISIBLE contents of the BMT scrolled message
window. The File menu item also supports the About command, which
displays an informational dialog about the application. The
application can be terminated by selection of the Exit command under
this menu item.

4.2 Edit:

The functions under this menu item describe operations that can be
performed on the scrolled message window(i.e. Cut, Copy, Paste,
Clear). The Find command wil generate a dialog box. This Find dialog
box will allow the entry of a search string to be compared with the
contents of the scrolled message window. This dialog box will also
allow searches on addresses, time stamps, message types, and message
priorities.

4.2.1 Find:

The find menu item will call up a dialog box that displays a text
entry which the user can enter a search string. The find function
applies to the messages displayed in the BMT event window that has the
focus. The search will always initiate from the beginning of the BMT
event window’s buffer and advance to the end. The "Find Next" button
will initiate and continue the search. The "Close" button will
dismiss the dialog box.

. 4.3 Options:

This menu item allows access to the filter functioms and the BMT
configuration funcation.

4.3.1 Filters

50

This menu command generates a "index card" style of dialog window. At
the bottom of the window are two select buttons ("Apply" and "Close").
Selecting the "Apply" button will apply all of the current selections
on all of the index cards in this window. Selecting the "Close"
button will close the dialog window without enacting any changes. The
filtered indexed items are: BCAD, Event Message Type, Time, and Event
Message Priority.

4.3.1.1 BCAD

The BCAD filter index card allows for the logging of selected BCADs.
The BCAD filter has a scrolled window that lists the BCADs that are
being passed through the BMT’s event filter. The scrolled filter
lists existing BCADs by IP address and alias (if listed). New BCADs
can be added or existing BCADs can be removed by using the "Add" and
"Remove" buttons at the base of the BCAD filter index card. can be
identified by address or alias.

4.3.1.2 Event Messages

The event message filter index card allows for the logging of specific
event messages. Selecting a particular event message type and subtype
will call up a dialog box specific to the message type. The new
dialog box will enable the user to enter a list of information
specific to the event message type, sub-type pair. (i.e. Selecting
Event Message New Entry : NLRI will call up a dialog box enabling the
input of IP addresses and/or IP address ranges) .

4.3.1.3 Time

The time filter index card enables filtering by start time and or stop
time. The start and stop time entries can be enabled or disabled by
the use of their associated toggle buttons. The start time is listed
as "From" and the stop time is listed as "To".

4.3.1.4 Priority

The priority filter index allows for the filtering out of event
messages based on event message priority. Each priority level has an
associated toggle button to enable/disable the logging of that
priority.

4.3.1.5 Score

The score filter index allows for the filtering out of event messages
based on event message score. The filter will enable message
filtering by user defined ranges of score. Filtering an individual
value of score can be performed by defining a range of a single score
value.

4.3.2 Configuration

This menu command generates a "index card" style of dialog window. At
the bottom of the window are four select buttons ("Load", "Apply",
"Save", and "Close"). The "Load" and "Save" buttons open a file
selection dialog box. This will enable the loading and saving of the
current BMT configuration. Selecting the "Apply" button will apply

51

all of the current selections on all of the index cards in this
window. Selecting the "Close" button will close the dialog window
without enacting any changes. The configuration indexed items are:
Aliases, Display, Message Database, and Logging.

4.3.2.1 Aliases

The Aliases index card enables the creation of aliases for BCAD
identification. The BCAD descriptor (IP address, Fully Qualified
Domain Name) is added with the BCAD alias. Aliases-Address pairs can
be added and/or removed by using the "Add" or "Remove" buttons at the
base of the Aliases index card.

4.3.2.2 Display
The Display configuration card allows for the assignment of available
pallette colors to each message priority level.

4.3.2.3 Event Message Dbase

The Event Message Database (Dbase) index card can be used to select an
event message database for use with the BMT. The index card displays
a directory listing box, a file listing box for the current directory,
and a path descriptor box. This grouping is a common File:Open or
Save dialog format.

4.3.2.4 Logging

The Logging index card enables the specification of log file roll over
boundaries. The constraints for the log files will be file size or
time. The time boundary will be determined using a combipation of a
pop up menu listing the number of roll overs per day. Selecting the
number of log file roll overs will populate a scrolled list of roll
over times. This list of roll over time values will be editable.

4.4 Connect:

This menu item enables the establishment of connections (via ssh)
between the BMT and BCAD applications through the "Connect"” command.
When this menu is selected, the lower half of the menu will display a
list of currently connected BCADs. Selecting the BCAD menu item will
call up the BCAD connection dialog box. The connection dialog box
contains a scrolled list of currently connected BCADs. BCADs can be
specified by IP address or Fully Qualified Domain Name. Any passwords
or pass phrases required by the "Connect" command will be prompted for
by the generation of a dialog box. Connection failures due to
authorization failure will be indicated by generation of a dialog box.

4.5 Windows:

This menu item will list all currently open BMT windows. Selecting
one of the windows listed in this menu will bring that window to the
foreground.

4.6 Help:

52

This menu will enable some help facility to be displayed.

There may

also be an "About" function which will briefly display the BMT

credits.

4.6.1 Help File:

Currently there is no help file format defined. If there is
sufficient time/budget/interest, a ASCII file containing help text
should be created for use by the BMT user. The help file should be

editable via a text editor.

5.0 Data Structures:

This section describes the data structure heirarchy for the ERIDS:BMT.
The structures are written in C so that they may be more easily

applied to the GTK GUI design framework.

5.1 Major Structures:
#ifndef OBJECTS_H
#define OBJECTS_H

/%
* Typedefs
*/
typedef struct _BMT_Object BMT_Object;

typedef struct _Event_File_Obj Event_File_0Obj;
typedef struct _Event_Display Event _Display;

typedef struct _Event_List_Entry Event_List_Entry;
typedef struct _Connection_Object Connection_0bject;

/*

* Configuration dialog related

*/
typedef struct _Configurat ion Configuration;
typedef struct _Alias_Dialog Alias_Dialog;
typedef struct _Display_Dialog Display_Dialog;
typedef struct _Logging Dialog Logging _Dialog;

typedef struct _Event_Dbase_Dialog Event_Dbase_Dialog;

/*
* Filter dialog related
*/
typedef struct _Filter Filter;
typedef struct _BCAD_Dialog BCAD_Dialog;
typedef struct _Time_ Dialog Time_Dialog;
typedef struct _Message_Dialog Message_Dialog;
typedef struct _Priority_Dialog Priority_Dialog;
typedef struct _Score_Dialog Score_Dialog;

53

/*

* Supporting dialogs

*/
typedef struct _Find_Settings Find_Settings;
typedef struct _Challenge Challenge;
typedef struct _Log Log;
typedef struct _Event_Dbase Event_Dbase;
typedef struct _Help_Dbase Help_Dbase;

/*

* General purpose support structures

*/
typedef struct _FileSelection FileSelection;
typedef struct _CList_Header CList_Header;
typedef struct _TLV TLV;
typedef struct _Message_Summary Message_Summary;
typedef struct _Range Range;

typedef struct _Address_Range Address_Range;
typedef struct _Time_Range Time_Range;
typedef struct _Priority Priority;

typedef struct _IPAddress IPAddress;

/*
* Linked lists
*/
typedef struct _Connection_List_Entry Connection_List_Entry;
typedef struct _Alias_List_Entry BCAD;
typedef struct _Alias_List_Entry Alias_List_Entry;
typedef struct _Message_Type_List_Entry Message_Type_List_Entry;
typedef struct _Message_Subtype_List_Entry Message_Subtype_List_Entry;
typedef struct _Address_Data_Entry Address_Data_Entry;
typedef struct _AS_Data AS_Data_Entry;

/*

* nmemonics

*/
typedef u_int AS;
typedef u_int MessageType;
typedef u_int MessageSubType;
typedef u_char MessagePriority;
typedef u_char MessageScore;
typedef char MessageSummary;
typedef u_char Instance;
typedef struct timeval TimeStamp;

/%

* Structure definitions:

*/
struct _CList_Header {
char *title;

54

int column_width;

};

/*
* Log, Event_Dbase, & Help_ Dbase defined as individual types
* for possible expansion of structure scope

*/

struct _Log

{
char *filename[LABEL_LENGTH];
FILE *fp;

};

struct _Event_Dbase

{
char *filename[LABEL_LENGTH];
FILE *fp;

};

struct _Help_Dbase

{
char *filename[LABEL_LENGTH];
FILE *fp;

}

/%

* Supporting Structures:

*/

struct _TLV

{
u_long msg_length;
u_char *msg;

3

struct _Message_Summary

{
u_long msg_length;
char *msg;

3

struct _IPAddress {
int type; /* IPv4, IPv6 =/
u_char addr [IN6ADDRSZ];

};
struct _Range
{
int start;
int stop;

55

};

struct _Address_Range {
IPAddress start;
IPAddress stop;

};

struct _Time_Range {
TimeStamp start;
TimeStamp stop;

};

struct _Priority {

u_char enabled;

u_char color(3]; /* RED=0, GREEN=1, BLUE=2
};

struct _Find_Settings {
GtkWidget *widget;
int row;
char search_string[BUFFER_LENGTH];
GtkWidget *entry;
GtkWidget xstatus_label;
}

struct _Challenge {
char userid [LABEL_LENGTH];
char passphrase[LABEL_LENGTH];

GtkWidget *userid_entry;
GtkWidget *passphrase_entry;
i

struct _FileSelection {
GtkWidget *frame;

GtkWidget *dir_list;
GtkWidget *file_list;
GtkWidget *selection_entry;
GtkWidget *selection_text;
GtkWidget *main_vbox;
GtkWidget *load_button;
GtkWidget *help_button;
GtkWidget *history_pulldown;
GtkWidget *history_menu;
GList xhistory_list;
GtkWidget *fileop_dialog;
GtkWidget *fileop_entry;
gchar xfileop_file;
gpointer cmpl_state;

56

GtkWidget *fileop_c_dir;
GtkWidget *fileop_del_file;
GtkWidget *fileop_ren_file;

GtkWidget *button_area;
GtkWidget *action_area;

};

/*
» Linked list element definitions
*/
struct _Alias_List_Entry {
Alias_List_Entry *prev;
Alias_List_Entry *next;

char label [LABEL_LENGTH];
GtkWidget *label_alias;

int address_type;
u_char address [IN6ADDRSZ];
GtkWidget *label_address;

¥

struct _Connection_List_Entry {
Connection_List_Entry *prev;
Connection_List_Entry *next;

GtkWidget *widget;
Alias_List_Entry *list;
};

struct _AS_Data_Entry {
AS_Data_Entry *prev;
AS_Data_Entry *next;

GtkWidget *widget;
char label [LABEL_LENGTH];
u_int as;

};

struct _Address_Data_Entry {
Address_Data_Entry *prev;
Address_Data_Entry *next;

GtkWidget xwidget;

int type;

char label [LABEL_LENGTH] ;
Address_Range address;

/* IPv4, IPv6

57

*/

struct _Message_Subtype_List_Entry {
Message_Subtype_List_Entry *prev;
Message_Subtype_List_Entry *next;

};

GtkWidget
GtkWidget

int

int

int
Address_Data_Entry
AS_Data_Entry

*widget;
*check;

type;

enabled;
pass_all;
*address_list;
*as_list;

struct _Message_Type_List_Entry {

};

Message_Type_List_Entry
Message_Type_List_Entry

GtkWidget
GtkWidget
int

int

int
GtkWidget

*xprev;
*next;

*widget;
*check;
enabled;

type;
pass_all;
*container_submsg_list;

Message_Subtype_List_Entry *submsg_list;

struct _Event_List_Entry {

};

/*

Event_List_Entry *prev;
Event_List_Entry *next;

GtkWidget xwidget;
TimeStamp received;
BCAD bcad;
MessageType type;
MessageSubType subtype;
u_char address_type;
Instance xinstance;

MessagePriority priority;

MessageScore score;
MessageSummary *summary;
TLV *tlv;

* Configuration Dialog Structure and sub-structures

*/

58

struct _Event_Display {

GtkWidget
GtkWidget
GtkWidget
Event_List_Entry

xyidget;
xfilename;
xevent_window;
xevent_list;

int number_of_item;

};

struct _Event_Dbase_Dialog {
GtkWidget *widget;

GtkWidget *entry_path;
char path[LABEL_LENGTH] ;
char tile[LABEL_LENGTH];
FILE xeventdb_Ip;

};

struct _Logging_Dialog {
GtkWidget *yidget;
int type;
GtkWidget *size_enable;
GtkWidget xsize_spinner;
u_long size;
GtkWidget =time_enable;
GtkWidget *time_spinner;
int num_files;
Time_Range logtime[MAX-LOGS_PER_DAY];

};

struct _Display_Dialog {
GtkWidget *widget;
GtkWidget *scrolled_window;
GtkWidget xgraphic_pallette;
GtkWidget *graphic_priority[MAX_PRIORITY];

Priority priority[MAx_PRIDRITY];

};

struct _Alias_Dialog

{

GtkWidget *widget;

GtkWidget »scrolled_window;

Alias_List_Entry

*1ist;

GtkWidget *descriptor;
GtkWidget *alias;

GtkWidget *rbutton_FDQN;

59

GtkWidget *rbutton_IPv4;
GtkWidget *rbutton_IPv6;

¥
struct _Configuration {
GtkWidget *yidget;
char filename [LABEL_LENGTH];
FILE *fp;
int loaded;
Alias_Dialog alias;

Display_Dialog display;
Logging_Dialog logging;
Event_Dbase_Dialog event_dbase;

};

/*
* Filter Dialog structure and sub-structures
*/
struct _Score_Dialog {
GtkWidget *widget;

GtkWidget *rbutton_start;
GtkWidget *entry_start;

GtkWidget *rbutton_stop;
GtkWidget *entry_stop;

Range score;

};

struct _Priority_Dialog {
GtkWidget *widget;

GtkWidget *button[MAX_PRIORITY];
Priority state(MAX_PRIORITY];

By

struct _Message_Dialog {
GtkWidget xwidget;
GtkWidget *scrolled_window;

Message_Type_List_Entry *list;
5

struct _Time_Dialog {
GtkWidget =*widget;

u_char from_enable;
GtkWidget *from_button;
GtkWidget *from_entry[4];

u_char to_enable;
GtkWidget *to_buttom;
GtkWidget *to_entry(4];

Range time;

};

struct _BCAD_Dialog {
GtkWidget xwidget;

GtkWidget *scrolled_window;
Alias_List_Entry *1list;
GtkWidget *descriptor;

GtkWidget xrbutton_FDQN;

GtkWidget *rbutton_IPvé4;

GtkWidget *rbutton_IPvé6;
};

struct _Filter {
GtkWidget *widget;

BCAD_Dialog bcad;
Time_Dialog time;
Message_Dialog message;
Priority_Dialog priority;

Score_Dialog score;

3

/*

*x Top level structures

*/

struct _Connection_Object {
GtkWidget xyidget;
GtkWidget *scrolled_window;
GtkWidget *xaddress;
Connection_List_Entry *connect_list;

s

struct _Event_File_Obj {
int file_index;

Connection_Object connect_obj;

Event_Display event_display;
Configuration configuration;
Filter filters;

Priority priority([MAX_PRIORITY];

61

/* Find Function Scratch Pad */
Find_Settings find;

/* Event Message Database */
Event_Dbase event_dbase;

/* Help Database */
Help_Dbase help_dbase;

/* Logfile */
Log log_obj;

/* Scratch Pad */
char username [LABEL_LENGTH];
char password[LABEL_LENGTH];

}

struct _BMT _Object {
GtkWidget *widget;
int width;
int height;

Configuration default_config;
Filter default_filters;

Event_File_0Obj *efo[MAX_FILES];
GtkWidget *window_list_entry;
s

#endif OBJECTS_H

5.3 Defines:

#ifndef DEFINE_H
#define DEFINE_H

/* Defines:

*/

/* General Definitions */
#define VERSION_MAJOR 0
#define VERSION_MINCOR 5

#define MAX_FILES 10
#define MAX_PRIORITY 10
#define MAX_LOGS_PER_DAY 12

#define LABEL_LENGTH 128

62

#define BUFFER_LENGTH 255

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

#define INVALID_ROW -1

#define 0K 0
#define FAIL -1

#define SIZE
#define TIME
#define RED

#define GREEN
#define BLUE

N~ O~ O

#define ENTRY
#define HOUR
#define MINUTE
#define SECOND

w N = O

#define DEFAULT_LOGFILE_SIZE (1024%1000) /* 1 Meg */

/* Message Type List */
#define NEW_ENTRY
#define POLICY_VIOLATION
#define UNTRUSTWORTHY
#define ADDRESS_CHANGE

/* Message subType List */
#define NLRI

#define AS_IN

#define AS_QUT

#define NEXT_HOP

/* List Entries */

#define MESSAGE_TYPE_ENTRY
#define MESSAGE_SUBTYPE_ENTRY
#define BCAD_ENTRY

#define ALIAS_ENTRY

#define ADDRESS_ENTRY
#define AS_ENTRY

/*

* GUI
*/

63

/* General »/
#define BASE_WINDOW_WIDTH 600
#define BASE_WINDOW_HEIGHT 400

/* Menus */
#define NUMBER_OF_MENUS 1
#define BMT_MAIN_MENU 0

/* CList table headers */
#define NUMBER_OF_ADDR_ALIAS_COLUMNS 2
#define NUMBER_UF_EVENT_DISPLAY_COLUMNS 5

#endif DEFINE_H

5.5 Global Variables:

BMT_Object BMTobj;
Configuration default_config;
Filter default_filter;

6.0 Dialog Layout Descriptors:

This section contains descriptions of BMT dialog boxes in a object GUI
format. The format parallels the C++ base Fresco GUI design tool and
the C based GTK GUI design tool.

6.1 Alias Dialog
vertical_box

scrolling_window

horizontal _box
vertical_box /* alias box */

label /% "Alias" */
horizontal_separator
label /* <First Alias Name> =/

label /* <Last Alias Name> */

vertical_box /* address box */
label /* "Address" */
horizontal_separator
label /* <First Address> */

label /% <Last Address> */
radio_button /* FQDN =/
radio_button /* IPv4 */

radio_button /* IPv6 =/
horizontal_box
vertical_box
label /* "Descriptor” */
label /* "Alias" =/
vertical_box
entry /* Descriptor */
entry /* Alias */
horizontal_box
select_button /* "Add" */
select_button /* "Remove" */
horizontal_box
select_button /* "Clear" (Align right) */

6.2 Display Dialog
vertical_box
horizontal_box
label /* "Palette" */
scrolling_window
graphical_insert /* Color Palette */
horizontal_box

label /* "Message Priority" */
horizontal_box
label /= "0" =/

graphical_insert /* Color Square */
horizontal_box

label /x "L o=/

graphical_insert /* Color Square */

horizontal_box
label /* "n" =/
graphical_insert /* Color Square */

6.3 Logging Dialog
vertical_box
horizontal_box

label /* "Rollover Boundry" */
horizontal box
radio_button /* size */
horizontal box
label /* "Size" */
spin button /* (1.0 - 10.0) Up/Down Arrow rolling type x/
horizontal box
radio button /* Logs per day */
horizontal box
label /* "Rollovers/Day" */
spin button /* (1-12) Up/Down Arrow rolling type */

65

6.4 Event Dbase Dialog
vertical box
horizontal box
vertical box
label /* “Directory” =/
scrolled_window
DIRECTORY_ENTRY
vertical box

label /* "Files" =/
scrolled_window
FILE_ENTRY
label /* File path */
entry /* File path =/
horizontal box
select_button /* "Load" =/

6.5 BCAD Dialog
vertical box

scrolling_window

horizontal box
vertical box /* alias box */

label /* "Alias" =/
horizontal_separator
label /* <First Alias Name> =*/

label /* <Last Alias Name> =*/

vertical box /* address box */
label /* "Address" */
horizontal_separator
label /* <First Address> =*/

label /* <Last Address> */

radio_button /* FQDN =/
radio_button /* IPv4 x/
radio_button /* IPv6 =/
horizontal box

label /* "Descriptor” */

entry /* Descriptor */
horizontal box

select_button /* "Add" =/

select_button /* "Remove" */

66

6.6 Time Dialog
vertical box
horizontal box /* Start Time */
toggle_button
label /* "From" */
spin button /* Hour */
spin button /% Minute */
spin button /* Second */
horizontal box /* Stop Time */
toggle_button
label /* "To" */
spin button /* Hour */
spin button /* Minute =/
spin button /* Second */

6.7 Message Dialog
scrolled_window
vertical box /* Template for Message type/sub-type <0>*/
horizontal box
toggle_button
label /* Message type */

vertical box /* Message sub-type container */
horizontal box /* Message subtype <0> */
toggle button
label
select button /* Button to call up specific dialog */

horizontal box /* Message subtype <1> */
toggle button
label
select button /* Button to call up specific dialog */

horizontal box /* Message subtype <n> =/
toggle button
label
select button /* Button to call up specific dialog */

horizontal box /* Template for Message type/sub-type <n>*/
toggle_button
label /* Message type */
horizontal box /* Align Center */
vertical box /* Message sub-type container */

horizontal box /* Message subtype <0> */
toggle button
label
select button /* Button to call up specific dialog */

horizontal box /* Message subtype <1> */

67

toggle button
label
select button /= Button to call up specific dialog =/

horizontal box /* Message subtype <n> */
toggle button
label
select button /* Button to call up specific dialog */

6.8 Priority Dialog
vertical box
label /* Priority Logged */

horizontal box

toggle_button

label /* "Q" =/
horizontal box

toggle_button

label /* "1" x/

horizontal box
toggle_button
label /* "n" */

6.9 Score Dialog
vertical box
horizontal box /% Start Score */
toggle_button
label /* "From" =/
spin button /* % (0 - 100) =*/
horizontal box /* Stop Time */
toggle_button
label /* "To" */
spin button /% % (0 - 100) */

6.10 Find Dialog
Window /* Find */
vertical box
horizontal box
label /+* "Find:" */
text entry /* for enter search string */
horizontal separator
horizontal box

button /* "Find" button =*/
button /* "Find Next" button */
button /* "Clear" button */

68

button /*= "Close” button */
horizontal separator
horizontal box
label /* "Status: " */
label /* for displaying status info */

6.11 Password Dialog
horizontal box
vertical box
label /* "Username" */
label /% "Password" */
vertical box
entry /* username */
entry /= password */

69

BCAD Design and Use Document

Defense Advanced Research Projects Agency
Information Technology Office

External Routing Intrusion Detection System
DARPA Order No. G403/00

Contract No. F30602-98-C-0242

Prepared by: BBN Technologies
10 Moulton Street
Cambridge, MA 02138

For: Air Force Research Laboratory
Information Directorate
26 Electronic Parkway
Rome, NY 13441-4514

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

70

BCAD Design and Use

This file documents BBN’s External Routing Intrusion Detection System
(ERIDS), a system for monitoring BGP-4 announcements.

Copyright (c) 1998, 1999 by GTE Internetworking Cambridge, MA, USA.
All Rights Reserved.

The External Routing Intrusion Detection System (ERIDS).
**

This manual documents ERIDS, a system for monitoring BGP-4 route
announcements. It documents release 0.1 of the system.

» Introduction: An introduction to ERIDS.

* Building ERIDS: How to compile and install ERIDS.

» Using the BCAD: How to configure and run ‘bcad’.

» Using the BMT: How to use ‘bmt’.

* ERIDS on SNMP: How to bring ERIDS events into SNMP.
* The BGP shell: How to use ‘bgpsh’.

* Bugs: Deficiencies and bugs.

* Copying: Copying conditions.

= References:

* Concept Index:

Introduction
ke e 3 ok e ke 3K e e 3ok K

The Border Gateway Protocol 4 (BGP-4) is a protocol designed to
distribute external routing information to the routers of distinct
Autonomous Systems in an internetwork (*note References: Rekhter and
Li).

Problems with BGP-4

The integrity of the global, external routing infrastructure and the
correct operation of routers depend on each router, OT "BGP speaker",
only having correct forwarding information, and only announcing correct
forwarding information to others. Specifically, the correct operation
of BGP-4 depends upon the integrity, authenticity, and recentness of the
routing information it distributes as well as each BGP speaker’s
processing, storing, and distribution of this information in accordance
with both the BGP specification and the routing policies of the BGP
speaker’s autonomous system.

BGP-4 is quite vulnerable to a variety of malicious attacks both in

71

theory and in practice, due to the lack of a scalable means to verify
the authenticity and legitimacy of the BGP control traffic with which
routers update their Routing Information Bases.

For example, the communication links between BGP neighbors are
subject to active and passive wiretapping. Fictitious BGP messages can
be injected into a link in a "spoofing attack”. Intercepted BGP
messages can be replayed over a link at a later time, in a "replay
attack". Regardless of the specifics of an attack, the acceptance of
erroneous BGP UPDATE messages and/or the suppression of UPDATEs may
cause route selections that are not consistent with the current state
of the internetwork, or that violate local routing policies. In the
absence of any attack, the erroneous configuration or malfunction of
normally well-behaved BGP speakers can also produce these same problems.

BBN’s S-BGP

BBN Technologies is currently developing a system of countermeasures
to secure BGP-4 (*note References: Lynn). This system, S-BGP,
relies on a public-key infrastructure that follows IP address space
allocation and Autonomous System number assignment, and features a new
BGP transitive path attribute containing signatures that verify the
validity of the routes that a BGP speaker advertises. This system is
backwards-compatible with existing BGP-4 implementations and does not
require hardware modifications to existing routing gear. However,
deployment of the proposed countermeasures is a nontrivial task. It
requires deployment of additional hardware and software by Internet
Service Providers (ISPs) in support of these countermeasures and
establishment and administration of a public key infrastructure by
registration authorities and ISPs, all on the scale of the worldwide
Internet. It may be several years before any deployment would be
completed.

In the meantime, BBN has also developed the External Routing
Intrusion Detection System, or ERIDS. ERIDS is a system designed to
provide Network Operation Centers (NOCs) with information describing
BGP-4 problems due to malicious attacks or misconfigurations. Two
requirements for ERIDS were that it must leverage the existing routing
infrastructure and must demonstrate backward compatibility with
existent networking gear and legacy systems.

There are three main features of the ERIDS system:
The BGP capture feature.
ERIDS devices, installed at shared and private interconnects, will

"snoop” on normal, existing BGP communications and feed BGP
messages to one or more BGP Intrusion Detection Engines.

72

The BGP Intrusion Detection Engine.
The Intrusion Detection Engine (IDE) is the ERIDS feature that
analyzes BGP messages fed to it by BGP capture devices. The
information base used by the IDE includes routing policy
information obtainable from Internet routing registries, and a
history database that it maintains itself. The IDE generates
sevents* when it determines that something is wrong at one or more
interconnects, and feeds those events to one or more BGP
Monitoring Tools.

The BGP Monitoring Tool.=
The BGP Monitoring Tool (BMT) is the ERIDS graphical user interface
feature. The BMT allows an operator to comnect to and display the
events from multiple IDEs in a common display window. Various
filters can be applied to the received event messages to allow the
operator to focus on specific activity, and the resulting filtered
data can be written to a log.

The first two ERIDS features are realized in one program, called the
BGP Capture and Analysis Daemon (BCAD, or ‘bcad’). The BMT feature is
realized in a program called ‘bmt’.

Miscellaneous

The ERIDS distribution also contains three other pieces of code of
note:

‘bgpsh’
The BGP shell ‘bgpsh’ is a command-line driven program that can
drive BGP sessions with multiple peers. It performs no true
routing function; it merely takes a "script" of BGP messages to
perform with the various peers, and performs it.

‘bnf-to-parser’
The ‘bnf-to-parser’ tool is a Perl script that can automatically
generate ‘lex’ and ‘yacc’ imput from a single BNF specification.
It is used to generate the scanner and the parser for ‘bgpsh’.

‘libscap’
The stream capture library ‘libscap’ is a very simple, almost
unfinished library for reconstructing TCP streams from captured
packets. It works best when used in conjunction with ‘libpcap’.

Building ERIDS
AR KA R

To build all of ERIDS, you must have already compiled and installed
the following libraries and programs:

73

‘libpcap’
The ‘libpcap’ library is used by ‘bcad’ to capture packets
carrying BGP messages. It is available at
‘ftp://ftp.ee.lbl.gov/libpcap.tar.Z’.

<

gtk+’
The ‘gtk+’ library is used by ‘bmt’ as its graphical user
jnterface library. At least ‘gtk+-1.2.0° is required, and it is
available at ‘ftp://ftp.gtk.org’.

‘ssh’

‘sshd’
The ‘ssh’ program can be used by ‘bcad’ and ‘bmt’ to connect to
remote ‘bcad’s and retrieve captured BGP messages or generated IDE
events.

The ‘sshd’ program can be used by ‘bcad’ to allow remote ‘bcad’s
and ‘bmt’s to connect and retrieve captured BGP messages or
generated IDE events. «Note that for simplicity and security, a
special, ERIDS-only version of ‘sshd’ is built for this purpose.*
This version is called ‘erids-sshd’.

The ‘ssh’ distribution (which includes ‘sshd’) is available at
‘ftp://ftp.ssh.fi’; version 1.2.26 has been tested with ERIDS.

‘ucd-snmp’
The University of California at Davis SNMP package can be extended
to provide ERIDS support. The ‘ucd-samp’ distribution is
available at ‘http://ucd-snmp.ucdavis.edu’; version 3.6.2 has been
tested with ERIDS.

‘readline’
The GNU ‘readline’ and ‘history’ libraries are purely optional,
but if present, allow ‘bgpsh’ to feature command-line editing and
history.

Once these needed libraries and programs have been compiled and
installed, begin compiling ERIDS by unpacking the distribution ‘.tar’
file. The distribution includes a ‘configure’ script that prepares the
ERIDS sources to compile on your system. This script can take
command-line options that control how the sources will be built:

» ‘--prefix='DIR
Normally, ‘configure’ will prepare the distributicn to be
installed under ‘/usr/local/bin’, ¢ fusr/local/lib’, etc. To make
it use an installation prefix other than ¢/usr/local’, give

‘configure’ the option ¢--prefix=’DIR.

* ‘--yithout-x’

74

If you do mot have the X window system, or do not have the ‘gtk+’
library installed, you will not be able to build the BMT, and you
should give the ‘--without-x’ option to ‘configure’.

* ¢-—with-sshd-build=’DIR
To build and install the special, ERIDS-only ‘erids-sshd’, use
this ‘configure’ option, where DIR is the name of the directory
containing the ‘sshd’ sources and objects. The ‘bcad’ build
process will automatically build and install this special version.

+ ‘--without-sshd-build-dir’

Alternately, if you do not wish to build the special ERIDS-only
‘sshd’, you can use this ‘configure’ option.

* ‘--yith-ucd-snmp-source=’DIR
To build (but not jnstall) the special, ERIDS-enabled version of
the UCD SNMP package, use this ‘configure’ option, where DIR is the
name of the directory containing the UCD SNMP ‘configure’ script.
The ERIDS configuration and build process will automatically
prepare and build that distribution with ERIDS support.

* ¢--without-sshd-build-dir’
Alternately, if you do not wish to build the special ERIDS-enabled
version of the UCD SNMP package, you can use this ‘configure’

option.

Once you’ve decided on any of the above ‘configure’ optioms, follow
these steps to prepare and build the distribution:

1. ‘sh ./configure ’OPTIONS
This will prepare the distribution for compiling. If you get error
messages here, your machine might not be supported by this release.
(*Note Bugs: for how to report bugs in the distribution.)

2. ‘make’

3. ‘make install’

This will install the ERIDS distribution under the prefix you
selected with ‘--prefix’, or it defaults to ‘/usr/local’.

Notes about ‘erids-sshd’

If you built ‘erids-sshd’, by default it installs into

75

¢ Jusr/local/sbin’ (or under whatever other ‘--prefix’ you specified to
the ERIDS ‘configure’).

However, since ‘erids-sshd’ is largely built from the same ‘sshd’
sources and objects you originally compiled, all of its ‘sshd’-type
behavior will be governed by the same arguments you originally gave to
the ‘ssh’ ‘configure’. This means that this ‘sshd’ will use the same
configuration files and host key that your normal ‘sshd’ uses. '

This may seem confusing. You may ask, if a separate ‘sshd’ really
*is% needed, shouldn’t it be completely separate, with its own host key
and configuration files? We believe the answer is no. ‘erids-sshd’ is
a special, "captive" version of your normal ‘sshd’, that allows only
the ‘erids’ user to log in and run ome very special program, ‘bcadsh’.
‘bcadsh’ is the program that connects to the local ‘bcad’ and asks for
either BGP or IDE information to pass back to the remote client.

Since ‘bcadsh’ must run as root, to save the user from having to
create the ‘erids’ user and then install ‘bcadsh’ setuid-root, we
decided to create ‘sshd-erids’. ‘sshd-erids’ is your normal ‘sshd’
linked with the ‘bcad-sshd’ object; this object captures ‘libc’
functions to create the illusion of a real ‘erids’ user, and to force
that the ‘erids’ user only run the ‘bcadsh’ program.

There is one real component to this ‘erids’ user - amn ‘sshd’
‘authorized_keys’ file. This file lists the RSA identities that are
allowed to "log in as" the ‘erids’ user. This list of keys combined
with the ‘bcad’ ‘--bgp-server’ and ‘--ide-server’ client lists form a
complete ‘bcad’ access-control system. The ‘erids’ ‘authorized_keys’
file is expected to be found under ‘/usr/local/etc/erids/.ssh’ (or
similarly under any ‘--prefix’ you gave to the ERIDS configure).

Using the BCAD

e e e K e ok e o ke ok K oKk

The BGP Capture and Analysis Daemon (BCAD, or ‘bcad’) is a single
program that performs the ERIDS BGP capture and Intrusion Detection
Engine functions. It is also able to feed the BGP messages it captures,
and the IDE events it generates, to clients. A BGP message client is
normally another ‘bcad’, and an IDE event client is normally a BMT.

The ‘becad’ program is normally imstalled in ‘/usr/local/sbin’. It
may take several command-line options:

¢~~bgp-probe FILTERFILE INTERFACE’
This option turns on the BGP capture feature of ‘bcad’. INTERFACE
is the name of the network interface that ‘bcad’ should listen on,
or the name of a ‘tcpdump’ capture file.

76

FILTERFILE is the name of a file containing a ‘tcpdump’
expression. This expression should select the packets belonging
to the BGP sessions you want ‘bcad’ to monitor. To capture all
BGP traffic on the wire, this could be just:

port 179

However, normally this will be an expression to capture only the
BGP traffic between certain selected peers.

¢--pgp-client SQURCEFILE’
This option turns on the BGP client feature of ‘bcad’. SOURCEFILE

is the name of a file listing the *sourcesx that this ‘bcad’ should
read BGP information from. The format of this file is:

+ Blank lines and lines that begin with ‘#’ are ignored.
* ‘ssh’ HOST [[USERNAME] PORT]

Each line of this form specifies that ‘pbcad’ should use ‘ssh’
to connect to HOST to retrieve BGP information. The optional
PORT specifies the port the ERIDS sshd is listening on on
HOST. The optional USERNAME specifies the username that the
local ‘bcad’ should use to connect to the remote ‘bead’.

‘pead’ will always try to reestablish ‘ssh’ connections that
have closed; it uses a backoff mechanism to throttle the

reconnection attempts.
= ‘file’ FILENAME

Each line of this form lists a file that ‘bcad’ should read
BGP information from.

*= ‘full’ COMMAND

Each line of this form specifies a full command that ‘bcad’
should execute to retrieve BGP information. ‘bcad’ will
always try to reopen ‘full’ commands that have closed; it
uses a backoff mechanism to throttle the reopen attempts.

¢--bgp-server CLIENTFILE’
This option turns on the BGP server feature of ‘bcad’. CLIENTFILE

is the name of a file listing the *clients that are allowed to
connect to this ‘bcad’ and retrieve captured BGP messages. The
format of this file is:

+ Blank lines and lines that begin with ‘#’ are ignored.

* Any other line is the hostname or IP address of an alloved
client.

‘--ide DATABASEDIR’
This option turns on the Intrusion Detection Engine feature of
‘bcad’. DATABASEDIR is the name of a directory containing the
compiled databases used to seed the IDE information base. There
are two sets of compiled databases: one contains *authoritative=
information, and the other contains *history* information.
Initially, the history databases are nonexistent. To compile the
authoritative databases, run the ERIDS ‘dbgen’ script with an
IRR-style database file on its standard input:

cd DATABASEDIR
dbgen < IRRDBFILE

‘dbgen’ always writes its output to the current directory.

¢~-ide-server CLIENTFILE’
This option turns on the IDE server feature of ‘bcad’. The
‘~~jde’ switch *must* be used with this switch. CLIENTFILE is the
name of a file listing the =»clients* that are allowed to connect
to this ‘bcad’ and retrieve generated IDE events. The format of
this file is:

* Blank lines and lines that begin with ‘#’ are ignored.

* Any other line is the hostname or IP address of an allowed
client.

None of these options preclude any others; for example, it is
possible to give ‘bcad’ the ‘--bgp-probe’, ‘--bgp-client’, and
¢--bgp-server’ switches. The BGP data collected and served will be the
data captured by ‘--bgp-probe’ and received through ‘--bgp-client’.

Normally, ‘bcad’ puts itself into the background, leaving behind a
PID file ‘/var/run/bcad.pid’ (or, if that directory does not exist,
‘/etc/bcad.pid’).

Sending a ‘SIGHUP’ to ‘bcad’ causes it to reload. The meaning of a
reload is different for the different ‘bcad’ features:

¢ --bgp-probe’
The ‘libpcap’ filter file is reloaded.

¢--bgp-client’
The sources file is reloaded. Any new sources are opened, and any
removed sources are closed.

‘-~-bgp-server’

The clients file is reloaded. Any new clients are allowed to
connect, and any old clients are bumped off.

78

‘--ide’
The authoritative databases are reloaded.

‘--jde-server’
The clients file is reloaded. Any new clients are allowed to
connect, and any old clients are bumped off.

When ‘--ide’ is used, sending a ‘SIGFPE’ to ‘bcad’ causes it to dump
its history databases to DATABASEDIR.

Using the BMT

3 3 3 e 3 3 e ke R ol K KoK

This is the little I could cull from existing documents. More
content and editing is needed - fredette.

The BGP Monitoring Tool (BMT) is the client portion of the ERIDS
system. Then BMT serves as the event manager and message interpretation
facility for a network operator. Messages coming from BCADs are decoded
and translated into human readable format using a local event
interpreter database. This tool allows the operator to establish a
connmection to one or more BCADs in order to receive intrusion warning or
alert messages from public Network Access Points and from direct
interconnect sessions simultaneously.

The Event Manager graphically displays the output of the Response
Module. The manager generates event logs for history, audits and
debugging. It also provides an interface for configuring the alarm
thresholds, contact lists, and other actions.

ERIDS on SNMP

3 2k 3¢ K 4 e ok ok 3 R K

ERIDS can also be monitored with the Simple Network Management
Protocol (SNMP). The ERIDS distribution includes a module that extends
the University of California at Davis (UCD) SNMP agent to present BCAD
IDE events in the form of an SNMP table.

The UCD SNMP distribution can be found at
‘http://ucd-snmp.ucdavis.edu’. The ERIDS module has been tested with
version 3.6.2 of their package. To build this package with the ERIDS
support, unpack it and rerun the ERIDS ‘configure’ script with the
¢ --with-ucd-snmp-source=’DIR option, where DIR is the name of the
directory containing the UCD ‘configure’ script. The ERIDS ‘configure’
will take care of adding the necessary ERIDS sources to the UCD build
tree and reconfiguring it, and the ERIDS ‘Makefile’s will build it.

To use ERIDS features of this modified ‘smnmpd’, first follow the
instructions in the normal UCD documentation om how to install,

79

configure, and start a normal ‘snmpd’. Once this is successful, add
the following *single* line to ‘sampd.conf’ to have ‘snmpd’ become a
client of a BCAD running somewhere:

erids store TABLESIZE source ssh -n -1 erids -i IDENTITY -a -x
-p PORT HOST bcadsh ide

Replace TABLESIZE with the maximum number of entries the ERIDS event
table should hold. Replace HOST and PORT with the hostname and port
number where an ERIDS ‘sshd’ is listening, and replace IDENTITY with
the path to the ‘ssh’ identity file needed to comnect to the ‘erids’
account there.

Once the ‘snmpd’ has connected to the remote BCAD (remember to put
the machine running ‘snmpd’ in the ‘--ide-server’ clients list of the
BCAD), you can walk the ERIDS subtree of the MIB. For example, on the
same machine where ‘snmpd’ is running:

$ snmpwalk -v 1 localhost COMMUNITY \
.iso.org.dod. internet.private.enterprises.bbn.products.erids

will walk the entire current contents of the ERIDS MIB subtree. To view
the current events table in a more intuitive form, do:

$ snmptable -v 1 localhost COMMUNITY \
.iso.org.dod. internet.private.enterprises.bbn.products.erids.eridsEventTable

The BGP shell

e 3k e 3¢ e ok o i ok K K K

ERIDS also comes with a BGP shell called ‘bgpsh’. This is a
command-line driven program that drives BGP sessions with multiple
peers. You present it with a script describing the sessions to open and
a sequence of messages to send on those sessions, with optional delays.

The ‘bgpsh’ usage is:
$ bgpsh -h

usage: bgpsh [<options>]
where <options> are:

-h, --help display this usage
-v, --verbose be verbose
-p PORT, --port PORT listen on port PORT
-d, --debug turn on debugging
The ‘--verbose’ switch displays messages received from peers. The
‘--port’ switch tells ‘bgpsh’ to listen on a port different from the
normal BGP port. Using ‘--debug’ one or more times produces increasing

amounts of debugging information.

80

Once started, ‘bgpsh’ presents a simple prompt:

$ bgpsh -v
bgpsh>

There is no ‘belp’ command. The shell ignores blank lines and lines
that begin with ‘#’. There is a simple variable system. Any line of
the form:

NAME=VALUE

defines the expansion of NAME to be VALUE. Variable substitution is
done when ‘$’NAME is seen on an input line.

A command that has had all variables substituted for, and is not
itself a variable definition, has the general form:

peer IPADDRESS [wait WAIT-TIME] BASIC-COMMAND

Each line begins by specifying the IPADDRESS of the peer it is
associated with, and an optional WAIT-TIME in seconds. All of the
command lines associated with the same peer are executed in order, and
execution of commands to different peers are interleaved. A command is
executed WAIT-TIME seconds after the last command to the same peer
completes, or WAIT-TIME seconds from the time the shell received the
command, whichever is later.

The possibilities for BASIC-COMMAND are:

‘open’ [‘port’ REMOTE-PORT] [‘passive’] [‘bgp-id’ LOCAL~BGP-ID]
‘local-as’ LOCAL-AS [‘hold-time’ HOLD-TIME]

This must be the first command used with a given peer. The
optional REMOTE-PORT is the port to comnect to the peer on. The
optional ‘passive’ tells ‘pbgpsh’ to wait for the peer to make the
connection, without trying to establish it itself. The optional
LOCAL-BGP-ID specifies what to claim as the local BGP identifier
in the ‘OPEN’ message. The LOCAL-AS number and optional HOLD-TIME
also go into the ‘OPEN’ message. The default hold time is two
minutes.

An ‘open’ command completes only when the peer session is
successfully established.

‘notification’ NOTIFY-CODE [NOTIFY-SUBCODE]
This sends a ‘NOTIFICATION’ message to a peer and closes the

session.

NOTIFY-CODE must be one of ‘message’, ‘open’, ‘update’,
‘hold-time’, ‘fsm’, ‘cease’, or an integer.

81

NOTIFY-SUBCODE, if present, must be one of ‘no-sync’,
‘bad-length’, ‘bad-type’, ‘bad-version’, ‘bad-as’, ‘bad-id’,
‘bad-parameter’, ‘bad-auth’, ‘bad-hold-time’, ‘bad-attributes’,

‘bad-well-known-attribute’, ‘missing-well-known-attribute’,
‘bad-attribute-flags’, ‘bad-attribute-length’, ‘bad-origin’,
‘as-routing-loop’, ‘bad-next-hop’, ‘bad-optional-attribute’,

‘bad-network’, ‘bad-as-path’, or an integer.

‘keepalive’
This sends a ‘KEEPALIVE’ message to a peer. This command is
normally not used, since ‘bgpsh’ automatically sends keepalives
often enough to respect a peer session’s hold time.

‘update’ [‘withdraw’ ‘nlri’ PREFIXES] [‘advertise’ PATH-ATTRIBUTES ‘nlri’ PREFIXES]
This sends an ‘UPDATE’ message to a peer. An ‘update’ command
must contain either a ‘withdraw’ clause or an ‘advertise’ clause,
or both.

PREFIXES is a comma-separated list of prefixes to advertise or
withdraw.

Valid PATH-ATTRIBUTES are:

‘origin’ {‘igp’ | ‘egp’ | ‘incomplete’}
This specifies the origin of the announced prefixes.

‘as-path’ AS-PATH-SEGMENTS
This specifies the AS path of the announced prefixes. A
single AS-PATH-SEGMENT is either ‘set’ or ‘sequence’ followed
by a list of AS numbers.

‘next-hop’ IPADDRESS
This specifies that the next hop of the announced prefixes
should be IPADDRESS.

‘med’ INTEGER
This specifies that the MED of the announced prefixes should
be INTEGER.

‘local-pref’ INTEGER
This specifies that the localpref of the announced prefixes
should be INTEGER.

‘atomic-aggregate’
This specifies that the announced prefixes are to be
considered atomic aggregates.

‘aggregator’ AS-NUMBER IPADDRESS

This specifies that the announced aggregates were generated
by IPADDRESS in AS AS-NUMBER.

82

Bugs

LE LS

The programs in the ERIDS release all have bugs and shortcomings.
This section captures the known bugs.

Reporting Bugs

For sure, many more bugs and shortcomings exist. Bug reports should
be mailed to <erids-core@cotton.ir.bbn.com>. The best bug reports
include:

* Input files and command lines that demonstrate the bug.
x The version of the ERIDS release with the bug.

* A suggested patch (please use ‘diff -c’) and ‘Changelog’ entry.

Copying

4 2 30 e K K

The United States Government has rights in this work pursuant to
contract no. F30602-98-C-0242 between the Defense Advanced Research
Projects Agency (DARPA) and GTE Internetworking / BBN Technologies.

Permission to use, copy, modify and distribute this documentation for
any purpose and without fee or royalty is hereby granted, provided that
you agree to comply with the copyright notice and statements, including
the following disclaimer, and that the same appear on ALL copies of the
documentation, including modificatiomns that you make for internal use or
for distribution:

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose is hereby granted without fee, provided
that the above copyright notice and this permission appear in all copies
and in supporting documentatiom, and that the name of GTE
Internetworking not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.
GTE-I makes no representations about the suitability of this software
for any purposes. It is provided "AS IS" without express or implied
warranties.

Title to copyright in this software and any associated documentation
shall at all times remain with GTE-I, and USER agrees to preserve same.

References

ek ok ok oK R KK
2U.S. GOVERNMENT PRINTING OFFICE: 2000-610-055-10022

83

DISTRISUTION LIST

addresses

AFRL/IFS

ATTN: ROZERT XAMINSKI

525 ZRI0¥S ROAD

ROME, NEW YORK 13441-4505

23N TLZCHNDOLOZIES
10 MOULTOAN STRTET
n

CAMORIDGT, MA 21372

AFAL/IFOTL
TICHMICAL LIZRARY
26 ELoCTRONIC PKY
2092 NY 134541-4314

MTTIOM: DTIL-0CC
N3T TECHNICAL TNFO CENTz=R

JDHN J. KINGMAN ROAD, 3TE D944
. PALVOI®, VA 22000-5213

Uty i

DEIFZN3® ADVANCED RE3TARCH
PROJECTS AZENTY

3731 NORTH FAIPFAX DPIVE
ARLIMGTON VA 22203-1716

ATTin: NAN PFRIMMER

IIT RESCARCH INSTITUTE
231 MILL 5T.

RGME, NY 13440

AFIT ACADEMIC LIZRARY

AFTT/LDR, 2950 P.3TREZ:

ARSA o» 2LDG 062

WRIGHT-PATTERSON AF3 OH 4354353-7755

AFRL/ALAT
2977 » 5TREET, STE 5
WRTGHT=-PATTERSON AF3 OW 45433-7739

DL-1

(%]

number
of copies

ARFRL/HESC-TDC
2693 u STRTET, 3LDG 19D
WRIGHT-PATTERSON AF8 JIH 45433-7534

ATTN: SMDC IM PL
US ARMY SPACE 5 MIS3SILT DIF CMD
°.n. 20X 1500

HUNTSVILLE AL 35397-33

o]

1

TECHNICAL LIBRARY DJ274(PL-TS)
SPAWARSYSCEN

53563 HULL S5T.

SAN DIZ3) (A 92152-59M

€DV, US ARMY AVIATION % MISSILE T#D
REDSTON: SCIENTIFIC INFORMATION (TR
ATTN: AMSAM=RD-~07-P, (DICUMENTS)
REDSTONE ARSENAL AL 35892-5000

RE®QORT LTJIRARY

MS PIod

LOS ALAMOS NATIONAL LAIQRATSRY
LOS ALAMCS NM 27545

ATTN: D' 30RAH HART
AVIATION 2RANCH SVC 122.10
F0u104a, RM 931

300 INDEPENDENLE AVEZ, SW
WASHINGTON pC 20591

AFIWC/¥SY
102 HaLL 45LVD, STE 315
SAN ANTONIO TX 72243-7014

ATTN: KAROLA M. YOURISON
SOFTWARE ENGINEEZRING INSTITUT:
4500 FIFTH AVENUE

PITTS3URGH PA 15213

USAF/AIR FORCEZ RESTAPCH LASORATORY
AFRL/VSISACLIZRARY=4LDE 1103

5 WRISHT DRIVE

HAMSCZOM AF3 MA 01731-3004

pL-2

tJd

ATTN: EILEEN LADUXE/D&6D
MITRE CORPORATION
202 3URLINGTON RD
BEDFORD MA 017730

QUSD(P)Y/DTSA/DUTD

ATTN: PATRICK 5. SULLIVAN, JR.
400 ARMY NAVY DRIVE

SUITE 302

ARLINGTON VA 22202

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of Information Systems Science
and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

